Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Умножим на .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Умножим на .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Умножим на .
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 3
Интеграл по имеет вид .
Этап 4
Этап 4.1
Найдем значение в и в .
Этап 4.2
Упростим.
Этап 4.2.1
Любое число в степени равно .
Этап 4.2.2
Умножим на .
Этап 5
Этап 5.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 5.2
Применим свойство дистрибутивности.
Этап 5.3
Умножим на .
Этап 6
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 7