Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Производная по равна .
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем.
Этап 1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.3.2
Упростим члены.
Этап 1.1.3.2.1
Объединим и .
Этап 1.1.3.2.2
Сократим общий множитель .
Этап 1.1.3.2.2.1
Сократим общий множитель.
Этап 1.1.3.2.2.2
Перепишем это выражение.
Этап 1.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.4
Умножим на .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
По правилу степени интеграл по имеет вид .
Этап 3
Заменим все вхождения на .