Введите задачу...
Математический анализ Примеры
Этап 1
Проинтегрируем по частям, используя формулу , где и .
Этап 2
Этап 2.1
Объединим и .
Этап 2.2
Объединим и .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
Объединим и .
Этап 4.2
Сократим общий множитель и .
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.2
Сократим общие множители.
Этап 4.2.2.1
Вынесем множитель из .
Этап 4.2.2.2
Сократим общий множитель.
Этап 4.2.2.3
Перепишем это выражение.
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Этап 6.1
Умножим на .
Этап 6.2
Перенесем влево от .
Этап 7
По правилу степени интеграл по имеет вид .
Этап 8
Этап 8.1
Перепишем в виде .
Этап 8.2
Упростим.
Этап 8.2.1
Объединим и .
Этап 8.2.2
Объединим и .
Этап 8.2.3
Умножим на .
Этап 8.2.4
Умножим на .
Этап 8.3
Объединим и .
Этап 8.4
Изменим порядок членов.