Математический анализ Примеры

Вычислим интеграл интеграл (x^3-3x^2-9)/(x^3-3x^2) в пределах от 4 до 5 по x
Этап 1
Разделим на .
Нажмите для увеличения количества этапов...
Этап 1.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
-++-+-
Этап 1.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
-++-+-
Этап 1.3
Умножим новое частное на делитель.
-++-+-
+-++
Этап 1.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
-++-+-
-+--
Этап 1.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
-++-+-
-+--
-
Этап 1.6
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Применим правило дифференцирования постоянных функций.
Этап 4
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Умножим на .
Этап 7
Запишем дробь, используя разложение на элементарные дроби.
Нажмите для увеличения количества этапов...
Этап 7.1
Разложим дробь и умножим на общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 7.1.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 7.1.1.1
Вынесем множитель из .
Этап 7.1.1.2
Вынесем множитель из .
Этап 7.1.1.3
Вынесем множитель из .
Этап 7.1.2
Для каждого множителя в знаменателе создадим новую дробь, используя множитель в качестве знаменателя, а неизвестное значение — в качестве числителя. Поскольку множитель в знаменателе линейный, поместим одну переменную на его место .
Этап 7.1.3
Умножим каждую дробь в уравнении на знаменатель исходного выражения. В этом случае знаменатель равен .
Этап 7.1.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.1.4.1
Сократим общий множитель.
Этап 7.1.4.2
Перепишем это выражение.
Этап 7.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.1.5.1
Сократим общий множитель.
Этап 7.1.5.2
Перепишем это выражение.
Этап 7.1.6
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 7.1.6.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.1.6.1.1
Сократим общий множитель.
Этап 7.1.6.1.2
Разделим на .
Этап 7.1.6.2
Применим свойство дистрибутивности.
Этап 7.1.6.3
Перенесем влево от .
Этап 7.1.6.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 7.1.6.4.1
Вынесем множитель из .
Этап 7.1.6.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 7.1.6.4.2.1
Возведем в степень .
Этап 7.1.6.4.2.2
Вынесем множитель из .
Этап 7.1.6.4.2.3
Сократим общий множитель.
Этап 7.1.6.4.2.4
Перепишем это выражение.
Этап 7.1.6.4.2.5
Разделим на .
Этап 7.1.6.5
Применим свойство дистрибутивности.
Этап 7.1.6.6
Умножим на .
Этап 7.1.6.7
Перенесем влево от .
Этап 7.1.6.8
Применим свойство дистрибутивности.
Этап 7.1.6.9
Перепишем, используя свойство коммутативности умножения.
Этап 7.1.6.10
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.1.6.10.1
Сократим общий множитель.
Этап 7.1.6.10.2
Разделим на .
Этап 7.1.7
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 7.1.7.1
Перенесем .
Этап 7.1.7.2
Перенесем .
Этап 7.1.7.3
Перенесем .
Этап 7.1.7.4
Перенесем .
Этап 7.2
Составим уравнения для переменных элементарной дроби и используем их для создания системы уравнений.
Нажмите для увеличения количества этапов...
Этап 7.2.1
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 7.2.2
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты из каждой части уравнения. Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 7.2.3
Составим уравнение для переменных элементарной дроби, приравняв коэффициенты членов, не содержащих . Чтобы уравнение было верным, эквивалентные коэффициенты в каждой части уравнения должны быть равны.
Этап 7.2.4
Составим систему уравнений, чтобы найти коэффициенты элементарных дробей.
Этап 7.3
Решим систему уравнений.
Нажмите для увеличения количества этапов...
Этап 7.3.1
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 7.3.1.1
Перепишем уравнение в виде .
Этап 7.3.1.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 7.3.1.2.1
Разделим каждый член на .
Этап 7.3.1.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.1.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.3.1.2.2.1.1
Сократим общий множитель.
Этап 7.3.1.2.2.1.2
Разделим на .
Этап 7.3.1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.1.2.3.1
Вынесем знак минуса перед дробью.
Этап 7.3.2
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 7.3.2.1
Заменим все вхождения в на .
Этап 7.3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.2.2.1
Избавимся от скобок.
Этап 7.3.3
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 7.3.3.1
Перепишем уравнение в виде .
Этап 7.3.3.2
Добавим к обеим частям уравнения.
Этап 7.3.3.3
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 7.3.3.3.1
Разделим каждый член на .
Этап 7.3.3.3.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.3.3.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.3.3.3.2.1.1
Сократим общий множитель.
Этап 7.3.3.3.2.1.2
Разделим на .
Этап 7.3.3.3.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.3.3.3.1
Умножим числитель на величину, обратную знаменателю.
Этап 7.3.3.3.3.2
Вынесем знак минуса перед дробью.
Этап 7.3.3.3.3.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 7.3.3.3.3.3.1
Умножим на .
Этап 7.3.3.3.3.3.2
Умножим на .
Этап 7.3.4
Заменим все вхождения на во всех уравнениях.
Нажмите для увеличения количества этапов...
Этап 7.3.4.1
Заменим все вхождения в на .
Этап 7.3.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 7.3.4.2.1
Избавимся от скобок.
Этап 7.3.5
Решим относительно в .
Нажмите для увеличения количества этапов...
Этап 7.3.5.1
Перепишем уравнение в виде .
Этап 7.3.5.2
Добавим к обеим частям уравнения.
Этап 7.3.6
Решим систему уравнений.
Этап 7.3.7
Перечислим все решения.
Этап 7.4
Заменим каждый коэффициент элементарной дроби в значениями, найденными для , и .
Этап 7.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.5.1
Умножим числитель на величину, обратную знаменателю.
Этап 7.5.2
Умножим на .
Этап 7.5.3
Перенесем влево от .
Этап 7.5.4
Умножим числитель на величину, обратную знаменателю.
Этап 7.5.5
Умножим на .
Этап 7.5.6
Перенесем влево от .
Этап 7.5.7
Умножим числитель на величину, обратную знаменателю.
Этап 7.5.8
Умножим на .
Этап 8
Разделим данный интеграл на несколько интегралов.
Этап 9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 11
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 11.1
Вынесем из знаменателя, возведя в степень.
Этап 11.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 11.2.1
Применим правило степени и перемножим показатели, .
Этап 11.2.2
Умножим на .
Этап 12
По правилу степени интеграл по имеет вид .
Этап 13
Объединим и .
Этап 14
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 15
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 16
Интеграл по имеет вид .
Этап 17
Объединим и .
Этап 18
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 19
Пусть . Тогда . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 19.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 19.1.1
Дифференцируем .
Этап 19.1.2
По правилу суммы производная по имеет вид .
Этап 19.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 19.1.4
Поскольку является константой относительно , производная относительно равна .
Этап 19.1.5
Добавим и .
Этап 19.2
Подставим нижнее предельное значение вместо в .
Этап 19.3
Вычтем из .
Этап 19.4
Подставим верхнее предельное значение вместо в .
Этап 19.5
Вычтем из .
Этап 19.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 19.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 20
Интеграл по имеет вид .
Этап 21
Объединим и .
Этап 22
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 22.1
Найдем значение в и в .
Этап 22.2
Найдем значение в и в .
Этап 22.3
Найдем значение в и в .
Этап 22.4
Найдем значение в и в .
Этап 22.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 22.5.1
Вычтем из .
Этап 22.5.2
Перепишем выражение, используя правило отрицательных степеней .
Этап 22.5.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 22.5.4
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 22.5.5
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 22.5.6
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 22.5.6.1
Умножим на .
Этап 22.5.6.2
Умножим на .
Этап 22.5.6.3
Умножим на .
Этап 22.5.6.4
Умножим на .
Этап 22.5.7
Объединим числители над общим знаменателем.
Этап 22.5.8
Добавим и .
Этап 22.5.9
Перепишем в виде произведения.
Этап 22.5.10
Умножим на .
Этап 22.5.11
Умножим на .
Этап 22.5.12
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 22.5.13
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 22.5.14
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 22.5.14.1
Умножим на .
Этап 22.5.14.2
Умножим на .
Этап 22.5.14.3
Умножим на .
Этап 22.5.14.4
Умножим на .
Этап 22.5.15
Объединим числители над общим знаменателем.
Этап 22.5.16
Умножим на .
Этап 22.5.17
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 22.5.18
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 22.5.18.1
Умножим на .
Этап 22.5.18.2
Умножим на .
Этап 22.5.19
Объединим числители над общим знаменателем.
Этап 22.5.20
Перенесем влево от .
Этап 22.5.21
Объединим и .
Этап 22.5.22
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 22.5.22.1
Вынесем множитель из .
Этап 22.5.22.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 22.5.22.2.1
Вынесем множитель из .
Этап 22.5.22.2.2
Сократим общий множитель.
Этап 22.5.22.2.3
Перепишем это выражение.
Этап 22.5.23
Вынесем знак минуса перед дробью.
Этап 23
Упростим.
Нажмите для увеличения количества этапов...
Этап 23.1
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 23.2
Используем формулу разности логарифмов с одинаковым основанием: .
Этап 23.3
Запишем в виде дроби с общим знаменателем.
Этап 23.4
Объединим числители над общим знаменателем.
Этап 24
Упростим.
Нажмите для увеличения количества этапов...
Этап 24.1
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 24.2
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 24.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 24.4
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 24.5
Разделим на .
Этап 24.6
Применим свойство дистрибутивности.
Этап 24.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 24.7.1
Умножим на .
Этап 24.7.2
Умножим на .
Этап 24.7.3
Умножим на .
Этап 24.8
Добавим и .
Этап 25
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 26