Математический анализ Примеры

Trovare la Derivata - d/dx y=( натуральный логарифм от x)/(x^3)
Этап 1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.1
Применим правило степени и перемножим показатели, .
Этап 2.2
Умножим на .
Этап 3
Производная по равна .
Этап 4
Продифференцируем, используя правило степени.
Нажмите для увеличения количества этапов...
Этап 4.1
Объединим и .
Этап 4.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Вынесем множитель из .
Этап 4.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Возведем в степень .
Этап 4.2.2.2
Вынесем множитель из .
Этап 4.2.2.3
Сократим общий множитель.
Этап 4.2.2.4
Перепишем это выражение.
Этап 4.2.2.5
Разделим на .
Этап 4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.4
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 4.4.1
Умножим на .
Этап 4.4.2
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 4.4.2.1
Умножим на .
Этап 4.4.2.2
Вынесем множитель из .
Этап 4.4.2.3
Вынесем множитель из .
Этап 5
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 5.1
Вынесем множитель из .
Этап 5.2
Сократим общий множитель.
Этап 5.3
Перепишем это выражение.
Этап 6
Упростим путем переноса под логарифм.