Математический анализ Примеры

Найти особые точки f(x)=(4x)/(x^2+1)
Этап 1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.2
Умножим на .
Этап 1.1.3.3
По правилу суммы производная по имеет вид .
Этап 1.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.3.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.1.3.6.1
Добавим и .
Этап 1.1.3.6.2
Умножим на .
Этап 1.1.4
Возведем в степень .
Этап 1.1.5
Возведем в степень .
Этап 1.1.6
Применим правило степени для объединения показателей.
Этап 1.1.7
Добавим и .
Этап 1.1.8
Вычтем из .
Этап 1.1.9
Объединим и .
Этап 1.1.10
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.10.1
Применим свойство дистрибутивности.
Этап 1.1.10.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.10.2.1
Умножим на .
Этап 1.1.10.2.2
Умножим на .
Этап 1.2
Первая производная по равна .
Этап 2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 2.1
Пусть первая производная равна .
Этап 2.2
Приравняем числитель к нулю.
Этап 2.3
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Вычтем из обеих частей уравнения.
Этап 2.3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Разделим каждый член на .
Этап 2.3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.2.2.1.1
Сократим общий множитель.
Этап 2.3.2.2.1.2
Разделим на .
Этап 2.3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 2.3.2.3.1
Разделим на .
Этап 2.3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 2.3.4
Любой корень из равен .
Этап 2.3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 2.3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 2.3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 2.3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.1.1
Подставим вместо .
Этап 4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.2.1
Умножим на .
Этап 4.1.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.1.2.2.1
Единица в любой степени равна единице.
Этап 4.1.2.2.2
Добавим и .
Этап 4.1.2.3
Разделим на .
Этап 4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 4.2.1
Подставим вместо .
Этап 4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.2.2.1
Умножим на .
Этап 4.2.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.2.2.2.1
Возведем в степень .
Этап 4.2.2.2.2
Добавим и .
Этап 4.2.2.3
Разделим на .
Этап 4.3
Перечислим все точки.
Этап 5