Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Вычтем из обеих частей уравнения.
Этап 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Этап 1.3
Вынесем множитель из .
Этап 1.3.1
Вынесем множитель из .
Этап 1.3.2
Вынесем множитель из .
Этап 1.3.3
Вынесем множитель из .
Этап 1.4
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 1.4.1
Сначала с помощью положительного значения найдем первое решение.
Этап 1.4.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 1.4.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 2
Set each solution of as a function of .
Этап 3
Этап 3.1
Продифференцируем обе части уравнения.
Этап 3.2
Продифференцируем левую часть уравнения.
Этап 3.2.1
Продифференцируем.
Этап 3.2.1.1
По правилу суммы производная по имеет вид .
Этап 3.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.2
Найдем значение .
Этап 3.2.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.2.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 3.2.2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.2.1.3
Заменим все вхождения на .
Этап 3.2.2.2
Перепишем в виде .
Этап 3.2.3
Изменим порядок членов.
Этап 3.3
Продифференцируем правую часть уравнения.
Этап 3.3.1
Поскольку является константой относительно , производная по равна .
Этап 3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3.3
Умножим на .
Этап 3.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 3.5
Решим относительно .
Этап 3.5.1
Вычтем из обеих частей уравнения.
Этап 3.5.2
Разделим каждый член на и упростим.
Этап 3.5.2.1
Разделим каждый член на .
Этап 3.5.2.2
Упростим левую часть.
Этап 3.5.2.2.1
Сократим общий множитель .
Этап 3.5.2.2.1.1
Сократим общий множитель.
Этап 3.5.2.2.1.2
Перепишем это выражение.
Этап 3.5.2.2.2
Сократим общий множитель .
Этап 3.5.2.2.2.1
Сократим общий множитель.
Этап 3.5.2.2.2.2
Разделим на .
Этап 3.5.2.3
Упростим правую часть.
Этап 3.5.2.3.1
Упростим каждый член.
Этап 3.5.2.3.1.1
Сократим общий множитель и .
Этап 3.5.2.3.1.1.1
Вынесем множитель из .
Этап 3.5.2.3.1.1.2
Сократим общие множители.
Этап 3.5.2.3.1.1.2.1
Вынесем множитель из .
Этап 3.5.2.3.1.1.2.2
Сократим общий множитель.
Этап 3.5.2.3.1.1.2.3
Перепишем это выражение.
Этап 3.5.2.3.1.2
Вынесем знак минуса перед дробью.
Этап 3.5.2.3.1.3
Сократим общий множитель и .
Этап 3.5.2.3.1.3.1
Вынесем множитель из .
Этап 3.5.2.3.1.3.2
Сократим общие множители.
Этап 3.5.2.3.1.3.2.1
Вынесем множитель из .
Этап 3.5.2.3.1.3.2.2
Сократим общий множитель.
Этап 3.5.2.3.1.3.2.3
Перепишем это выражение.
Этап 3.5.2.3.1.4
Вынесем знак минуса перед дробью.
Этап 3.6
Заменим на .
Этап 4
Этап 4.1
Добавим к обеим частям уравнения.
Этап 4.2
Поскольку выражения в каждой части уравнения имеют одинаковые знаменатели, числители должны быть равны.
Этап 4.3
Разделим каждый член на и упростим.
Этап 4.3.1
Разделим каждый член на .
Этап 4.3.2
Упростим левую часть.
Этап 4.3.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.3.2.2
Разделим на .
Этап 4.3.3
Упростим правую часть.
Этап 4.3.3.1
Разделим на .
Этап 5
Этап 5.1
Заменим в этом выражении переменную на .
Этап 5.2
Упростим результат.
Этап 5.2.1
Умножим на .
Этап 5.2.2
Добавим и .
Этап 5.2.3
Умножим на .
Этап 5.2.4
Перепишем в виде .
Этап 5.2.5
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.2.6
Окончательный ответ: .
Этап 6
Этап 6.1
Заменим в этом выражении переменную на .
Этап 6.2
Упростим результат.
Этап 6.2.1
Умножим на .
Этап 6.2.2
Добавим и .
Этап 6.2.3
Умножим на .
Этап 6.2.4
Перепишем в виде .
Этап 6.2.5
Умножим.
Этап 6.2.5.1
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.2.5.2
Умножим на .
Этап 6.2.6
Окончательный ответ: .
Этап 7
The horizontal tangent lines are
Этап 8