Математический анализ Примеры

Вычислим интеграл интеграл xe^(x^2) в пределах от 0 до 1 по x
Этап 1
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 1.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.1.2.3
Заменим все вхождения на .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.4.1
Изменим порядок множителей в .
Этап 1.1.4.2
Изменим порядок множителей в .
Этап 1.2
Подставим нижнее предельное значение вместо в .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Возведение в любую положительную степень дает .
Этап 1.3.2
Любое число в степени равно .
Этап 1.4
Подставим верхнее предельное значение вместо в .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Единица в любой степени равна единице.
Этап 1.5.2
Упростим.
Этап 1.6
Значения, найденные для и , будут использованы для вычисления данного определенного интеграла.
Этап 1.7
Переформулируем задачу, используя , и новые пределы интегрирования.
Этап 2
Применим правило дифференцирования постоянных функций.
Этап 3
Подставим и упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем значение в и в .
Этап 3.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.2.1
Объединим и .
Этап 3.2.2
Умножим на .
Этап 4
Результат можно представить в различном виде.
Точная форма:
Десятичная форма:
Этап 5