Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Умножим на .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Этап 2.1
Умножим на .
Этап 2.2
Перенесем влево от .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Этап 4.1
С помощью запишем в виде .
Этап 4.2
Вынесем из знаменателя, возведя в степень.
Этап 4.3
Перемножим экспоненты в .
Этап 4.3.1
Применим правило степени и перемножим показатели, .
Этап 4.3.2
Объединим и .
Этап 4.3.3
Вынесем знак минуса перед дробью.
Этап 5
По правилу степени интеграл по имеет вид .
Этап 6
Этап 6.1
Перепишем в виде .
Этап 6.2
Упростим.
Этап 6.2.1
Объединим и .
Этап 6.2.2
Сократим общий множитель .
Этап 6.2.2.1
Сократим общий множитель.
Этап 6.2.2.2
Перепишем это выражение.
Этап 6.2.3
Умножим на .
Этап 7
Заменим все вхождения на .