Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 3
Этап 3.1
По правилу суммы производная по имеет вид .
Этап 3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4
Поскольку является константой относительно , производная относительно равна .
Этап 3.5
Добавим и .
Этап 3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.7
Объединим дроби.
Этап 3.7.1
Умножим на .
Этап 3.7.2
Умножим на .
Этап 4
Этап 4.1
Применим свойство дистрибутивности.
Этап 4.2
Применим свойство дистрибутивности.
Этап 4.3
Упростим числитель.
Этап 4.3.1
Упростим каждый член.
Этап 4.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 4.3.1.2
Умножим на , сложив экспоненты.
Этап 4.3.1.2.1
Перенесем .
Этап 4.3.1.2.2
Умножим на .
Этап 4.3.1.2.2.1
Возведем в степень .
Этап 4.3.1.2.2.2
Применим правило степени для объединения показателей.
Этап 4.3.1.2.3
Добавим и .
Этап 4.3.1.3
Умножим на .
Этап 4.3.1.4
Умножим на .
Этап 4.3.2
Объединим противоположные члены в .
Этап 4.3.2.1
Вычтем из .
Этап 4.3.2.2
Добавим и .
Этап 4.3.3
Вычтем из .
Этап 4.4
Сократим общий множитель и .
Этап 4.4.1
Вынесем множитель из .
Этап 4.4.2
Вынесем множитель из .
Этап 4.4.3
Вынесем множитель из .
Этап 4.4.4
Сократим общие множители.
Этап 4.4.4.1
Вынесем множитель из .
Этап 4.4.4.2
Сократим общий множитель.
Этап 4.4.4.3
Перепишем это выражение.