Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Зададим аргумент в большим , чтобы узнать, где определено данное выражение.
Этап 1.2
Решим относительно .
Этап 1.2.1
Чтобы избавиться от радикала в левой части неравенства, возведем обе части неравенства в квадрат.
Этап 1.2.2
Упростим каждую часть неравенства.
Этап 1.2.2.1
С помощью запишем в виде .
Этап 1.2.2.2
Упростим левую часть.
Этап 1.2.2.2.1
Упростим .
Этап 1.2.2.2.1.1
Перемножим экспоненты в .
Этап 1.2.2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 1.2.2.2.1.1.2
Сократим общий множитель .
Этап 1.2.2.2.1.1.2.1
Сократим общий множитель.
Этап 1.2.2.2.1.1.2.2
Перепишем это выражение.
Этап 1.2.2.2.1.2
Упростим.
Этап 1.2.2.3
Упростим правую часть.
Этап 1.2.2.3.1
Возведение в любую положительную степень дает .
Этап 1.2.3
Найдем область определения .
Этап 1.2.3.1
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 1.2.3.2
Область определения ― это все значения , при которых выражение определено.
Этап 1.2.4
Решение состоит из всех истинных интервалов.
Этап 1.3
Зададим подкоренное выражение в большим или равным , чтобы узнать, где определено данное выражение.
Этап 1.4
Область определения ― это все значения , при которых выражение определено.
Интервальное представление:
Обозначение построения множества:
Интервальное представление:
Обозначение построения множества:
Этап 2
Этап 2.1
Заменим в этом выражении переменную на .
Этап 2.2
Избавимся от скобок.
Этап 2.3
Перепишем в виде .
Этап 2.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 2.5
Натуральный логарифм нуля не определен.
Неопределенные
Этап 3
Конечная точка подкоренного выражения: .
Этап 4
Этап 4.1
Подставим значение в . В данном случае получится точка .
Этап 4.1.1
Заменим в этом выражении переменную на .
Этап 4.1.2
Упростим результат.
Этап 4.1.2.1
Избавимся от скобок.
Этап 4.1.2.2
Любой корень из равен .
Этап 4.1.2.3
Натуральный логарифм равен .
Этап 4.1.2.4
Окончательный ответ: .
Этап 4.2
Подставим значение в . В данном случае получится точка .
Этап 4.2.1
Заменим в этом выражении переменную на .
Этап 4.2.2
Упростим результат.
Этап 4.2.2.1
Избавимся от скобок.
Этап 4.2.2.2
Окончательный ответ: .
Этап 4.3
График квадратного корня можно построить с помощью точек вокруг вершины .
Этап 5