Математический анализ Примеры

Оценить предел предел (sin(4x))/(sin(6x)), если x стремится к 0
Этап 1
Умножим числитель и знаменатель на .
Этап 2
Умножим числитель и знаменатель на .
Этап 3
Разделим дроби.
Этап 4
Разобьем предел с помощью правила произведения пределов при стремлении к .
Этап 5
Предел при стремлении к равен .
Нажмите для увеличения количества этапов...
Этап 5.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 5.1.1
Возьмем предел числителя и предел знаменателя.
Этап 5.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 5.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 5.1.2.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 5.1.2.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.1.2.2
Найдем предел , подставив значение для .
Этап 5.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.1.2.3.1
Умножим на .
Этап 5.1.2.3.2
Точное значение : .
Этап 5.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 5.1.3.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.1.3.2
Найдем предел , подставив значение для .
Этап 5.1.3.3
Умножим на .
Этап 5.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 5.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 5.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 5.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 5.3.1
Продифференцируем числитель и знаменатель.
Этап 5.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 5.3.2.2
Производная по равна .
Этап 5.3.2.3
Заменим все вхождения на .
Этап 5.3.3
Поскольку является константой относительно , производная по равна .
Этап 5.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3.5
Умножим на .
Этап 5.3.6
Перенесем влево от .
Этап 5.3.7
Поскольку является константой относительно , производная по равна .
Этап 5.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.3.9
Умножим на .
Этап 5.4
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 5.4.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.4.1.1
Сократим общий множитель.
Этап 5.4.1.2
Разделим на .
Этап 5.4.2
Перенесем предел внутрь тригонометрической функции, поскольку косинус является непрерывной функцией.
Этап 5.4.3
Вынесем член из-под знака предела, так как он не зависит от .
Этап 5.5
Найдем предел , подставив значение для .
Этап 5.6
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 5.6.1
Умножим на .
Этап 5.6.2
Точное значение : .
Этап 6
Предел при стремлении к равен .
Нажмите для увеличения количества этапов...
Этап 6.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Возьмем предел числителя и предел знаменателя.
Этап 6.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 6.1.2.1
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6.1.2.2
Найдем предел , подставив значение для .
Этап 6.1.2.3
Умножим на .
Этап 6.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 6.1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 6.1.3.1.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 6.1.3.1.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6.1.3.2
Найдем предел , подставив значение для .
Этап 6.1.3.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 6.1.3.3.1
Умножим на .
Этап 6.1.3.3.2
Точное значение : .
Этап 6.1.3.3.3
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 6.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 6.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 6.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 6.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 6.3.1
Продифференцируем числитель и знаменатель.
Этап 6.3.2
Поскольку является константой относительно , производная по равна .
Этап 6.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.3.4
Умножим на .
Этап 6.3.5
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 6.3.5.1
Чтобы применить цепное правило, зададим как .
Этап 6.3.5.2
Производная по равна .
Этап 6.3.5.3
Заменим все вхождения на .
Этап 6.3.6
Поскольку является константой относительно , производная по равна .
Этап 6.3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 6.3.8
Умножим на .
Этап 6.3.9
Перенесем влево от .
Этап 6.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.4.1
Сократим общий множитель.
Этап 6.4.2
Перепишем это выражение.
Этап 6.5
Переведем в .
Этап 6.6
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 6.6.1
Перенесем предел внутрь тригонометрической функции, поскольку секанс — непрерывная функция.
Этап 6.6.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 6.7
Найдем предел , подставив значение для .
Этап 6.8
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 6.8.1
Умножим на .
Этап 6.8.2
Точное значение : .
Этап 7
Сократим.
Нажмите для увеличения количества этапов...
Этап 7.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 7.1.1
Вынесем множитель из .
Этап 7.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 7.1.2.1
Вынесем множитель из .
Этап 7.1.2.2
Сократим общий множитель.
Этап 7.1.2.3
Перепишем это выражение.
Этап 7.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 7.2.1
Сократим общий множитель.
Этап 7.2.2
Перепишем это выражение.
Этап 8
Найдем предел , который является константой по мере приближения к .
Этап 9
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 9.1
Умножим на .
Этап 9.2
Умножим на .
Этап 10
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: