Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Найдем предел числителя и предел знаменателя.
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Этап 1.1.2.1
Вычислим предел.
Этап 1.1.2.1.1
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.2.1.2
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Этап 1.1.2.3.1
Точное значение : .
Этап 1.1.2.3.2
Возведение в любую положительную степень дает .
Этап 1.1.3
Найдем предел , подставив значение для .
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 1.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.2.3
Заменим все вхождения на .
Этап 1.3.3
Производная по равна .
Этап 1.3.4
Упростим.
Этап 1.3.4.1
Изменим порядок множителей в .
Этап 1.3.4.2
Изменим порядок и .
Этап 1.3.4.3
Изменим порядок и .
Этап 1.3.4.4
Применим формулу двойного угла для синуса.
Этап 1.3.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.4
Разделим на .
Этап 2
Этап 2.1
Перенесем предел внутрь тригонометрической функции, поскольку синус является непрерывной функцией.
Этап 2.2
Вынесем член из-под знака предела, так как он не зависит от .
Этап 3
Найдем предел , подставив значение для .
Этап 4
Этап 4.1
Умножим на .
Этап 4.2
Точное значение : .