Математический анализ Примеры

Вычислим интеграл интеграл (( натуральный логарифм x)^2)/(x^3) по x
Этап 1
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 1.1
Вынесем из знаменателя, возведя в степень.
Этап 1.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Применим правило степени и перемножим показатели, .
Этап 1.2.2
Умножим на .
Этап 2
Проинтегрируем по частям, используя формулу , где и .
Этап 3
Упростим.
Нажмите для увеличения количества этапов...
Этап 3.1
Объединим и .
Этап 3.2
Умножим на .
Этап 3.3
Возведем в степень .
Этап 3.4
Применим правило степени для объединения показателей.
Этап 3.5
Добавим и .
Этап 4
Перепишем в виде .
Этап 5
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 6.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 6.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 6.1.1.1
Сократим общий множитель.
Этап 6.1.1.2
Перепишем это выражение.
Этап 6.1.2
Умножим на .
Этап 6.1.3
Умножим на .
Этап 6.2
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 6.2.1
Вынесем из знаменателя, возведя в степень.
Этап 6.2.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 6.2.2.1
Применим правило степени и перемножим показатели, .
Этап 6.2.2.2
Умножим на .
Этап 7
Проинтегрируем по частям, используя формулу , где и .
Этап 8
Упростим.
Нажмите для увеличения количества этапов...
Этап 8.1
Объединим и .
Этап 8.2
Умножим на .
Этап 8.3
Возведем в степень .
Этап 8.4
Применим правило степени для объединения показателей.
Этап 8.5
Добавим и .
Этап 9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Упростим.
Нажмите для увеличения количества этапов...
Этап 10.1
Умножим на .
Этап 10.2
Умножим на .
Этап 11
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 12
Применим основные правила для показателей степени.
Нажмите для увеличения количества этапов...
Этап 12.1
Вынесем из знаменателя, возведя в степень.
Этап 12.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 12.2.1
Применим правило степени и перемножим показатели, .
Этап 12.2.2
Умножим на .
Этап 13
По правилу степени интеграл по имеет вид .
Этап 14
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 14.1
Перепишем в виде .
Этап 14.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.2.1
Умножим на .
Этап 14.2.2
Перенесем влево от .
Этап 14.2.3
Умножим на .
Этап 14.2.4
Умножим на .