Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.2
Производная по равна .
Этап 1.3
Продифференцируем, используя правило степени.
Этап 1.3.1
Объединим и .
Этап 1.3.2
Сократим общий множитель .
Этап 1.3.2.1
Сократим общий множитель.
Этап 1.3.2.2
Перепишем это выражение.
Этап 1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.4
Умножим на .
Этап 2
Этап 2.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем.
Этап 2.2.1
Перемножим экспоненты в .
Этап 2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2
Умножим на .
Этап 2.2.2
По правилу суммы производная по имеет вид .
Этап 2.2.3
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.4
Добавим и .
Этап 2.2.5
Поскольку является константой относительно , производная по равна .
Этап 2.3
Производная по равна .
Этап 2.4
Продифференцируем, используя правило степени.
Этап 2.4.1
Объединим и .
Этап 2.4.2
Сократим общий множитель и .
Этап 2.4.2.1
Вынесем множитель из .
Этап 2.4.2.2
Сократим общие множители.
Этап 2.4.2.2.1
Возведем в степень .
Этап 2.4.2.2.2
Вынесем множитель из .
Этап 2.4.2.2.3
Сократим общий множитель.
Этап 2.4.2.2.4
Перепишем это выражение.
Этап 2.4.2.2.5
Разделим на .
Этап 2.4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.4
Упростим с помощью разложения.
Этап 2.4.4.1
Умножим на .
Этап 2.4.4.2
Вынесем множитель из .
Этап 2.4.4.2.1
Вынесем множитель из .
Этап 2.4.4.2.2
Вынесем множитель из .
Этап 2.4.4.2.3
Вынесем множитель из .
Этап 2.5
Сократим общие множители.
Этап 2.5.1
Вынесем множитель из .
Этап 2.5.2
Сократим общий множитель.
Этап 2.5.3
Перепишем это выражение.
Этап 2.6
Упростим.
Этап 2.6.1
Применим свойство дистрибутивности.
Этап 2.6.2
Упростим числитель.
Этап 2.6.2.1
Упростим каждый член.
Этап 2.6.2.1.1
Умножим на .
Этап 2.6.2.1.2
Умножим .
Этап 2.6.2.1.2.1
Умножим на .
Этап 2.6.2.1.2.2
Упростим путем переноса под логарифм.
Этап 2.6.2.2
Вычтем из .
Этап 2.6.3
Перепишем в виде .
Этап 2.6.4
Вынесем множитель из .
Этап 2.6.5
Вынесем множитель из .
Этап 2.6.6
Вынесем знак минуса перед дробью.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 4.1.2
Производная по равна .
Этап 4.1.3
Продифференцируем, используя правило степени.
Этап 4.1.3.1
Объединим и .
Этап 4.1.3.2
Сократим общий множитель .
Этап 4.1.3.2.1
Сократим общий множитель.
Этап 4.1.3.2.2
Перепишем это выражение.
Этап 4.1.3.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.4
Умножим на .
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Приравняем числитель к нулю.
Этап 5.3
Решим уравнение относительно .
Этап 5.3.1
Вычтем из обеих частей уравнения.
Этап 5.3.2
Разделим каждый член на и упростим.
Этап 5.3.2.1
Разделим каждый член на .
Этап 5.3.2.2
Упростим левую часть.
Этап 5.3.2.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 5.3.2.2.2
Разделим на .
Этап 5.3.2.3
Упростим правую часть.
Этап 5.3.2.3.1
Разделим на .
Этап 5.3.3
Чтобы решить относительно , перепишем уравнение, используя свойства логарифмов.
Этап 5.3.4
Перепишем в экспоненциальной форме, используя определение логарифма. Если и — положительные вещественные числа и , то эквивалентно .
Этап 5.3.5
Перепишем уравнение в виде .
Этап 6
Этап 6.1
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 6.2
Решим относительно .
Этап 6.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 6.2.2
Упростим .
Этап 6.2.2.1
Перепишем в виде .
Этап 6.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 6.2.2.3
Плюс или минус равно .
Этап 6.3
Зададим аргумент в меньшим или равным , чтобы узнать, где данное выражение не определено.
Этап 6.4
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Используем основные свойства логарифмов, чтобы вынести из степени.
Этап 9.2
Натуральный логарифм равен .
Этап 9.3
Умножим на .
Этап 9.4
Умножим на .
Этап 9.5
Вычтем из .
Этап 10
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 11
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Этап 11.2.1
Натуральный логарифм равен .
Этап 11.2.2
Окончательный ответ: .
Этап 12
Это локальные экстремумы .
— локальный максимум
Этап 13