Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Пусть . Найдем .
Этап 1.1.1
Дифференцируем .
Этап 1.1.2
Поскольку является константой относительно , производная по равна .
Этап 1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.4
Умножим на .
Этап 1.2
Переформулируем задачу с помощью и .
Этап 2
Этап 2.1
Перепишем в виде .
Этап 2.1.1
С помощью запишем в виде .
Этап 2.1.2
Применим правило степени и перемножим показатели, .
Этап 2.1.3
Объединим и .
Этап 2.1.4
Сократим общий множитель .
Этап 2.1.4.1
Сократим общий множитель.
Этап 2.1.4.2
Перепишем это выражение.
Этап 2.1.5
Упростим.
Этап 2.2
Вынесем знак минуса перед дробью.
Этап 2.3
Умножим на .
Этап 2.4
Умножим на .
Этап 2.5
Объединим и .
Этап 2.6
Объединим и .
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Проинтегрируем по частям, используя формулу , где и .
Этап 5
Интеграл по имеет вид .
Этап 6
Упростим.
Этап 7
Заменим все вхождения на .
Этап 8
Этап 8.1
Применим свойство дистрибутивности.
Этап 8.2
Умножим .
Этап 8.2.1
Объединим и .
Этап 8.2.2
Объединим и .
Этап 8.3
Объединим и .
Этап 8.4
Изменим порядок множителей в .
Этап 9
Изменим порядок членов.