Математический анализ Примеры

Вычислим интеграл интеграл tan(x)^5 по x
Этап 1
Вынесем за скобки.
Этап 2
Упростим с помощью разложения.
Нажмите для увеличения количества этапов...
Этап 2.1
Вынесем множитель из .
Этап 2.2
Перепишем в виде степенного выражения.
Этап 3
Используя формулы Пифагора, запишем в виде .
Этап 4
Воспользуемся бином Ньютона.
Этап 5
Упростим путем перемножения.
Нажмите для увеличения количества этапов...
Этап 5.1
Применим свойство дистрибутивности.
Этап 5.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 5.2.1
Возведем в степень .
Этап 5.2.2
Умножим на .
Этап 5.2.3
Умножим на .
Этап 5.2.4
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 5.2.4.1
Применим правило степени и перемножим показатели, .
Этап 5.2.4.2
Умножим на .
Этап 6
Разделим данный интеграл на несколько интегралов.
Этап 7
Интеграл по имеет вид .
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 9.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 9.1.1
Дифференцируем .
Этап 9.1.2
Производная по равна .
Этап 9.2
Переформулируем задачу с помощью и .
Этап 10
По правилу степени интеграл по имеет вид .
Этап 11
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 11.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1.1
Дифференцируем .
Этап 11.1.2
Производная по равна .
Этап 11.2
Переформулируем задачу с помощью и .
Этап 12
По правилу степени интеграл по имеет вид .
Этап 13
Упростим.
Нажмите для увеличения количества этапов...
Этап 13.1
Объединим и .
Этап 13.2
Упростим.
Этап 14
Выполним обратную подстановку для каждой подставленной переменной интегрирования.
Нажмите для увеличения количества этапов...
Этап 14.1
Заменим все вхождения на .
Этап 14.2
Заменим все вхождения на .