Математический анализ Примеры

Оценить предел предел ( квадратный корень из x^2+49-25)/(x+24), когда x стремится к -24
Этап 1
Применим правило Лопиталя.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем предел числителя и предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Возьмем предел числителя и предел знаменателя.
Этап 1.1.2
Найдем предел числителя.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.2.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.2
Внесем предел под знак радикала.
Этап 1.1.2.1.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.2.1.4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 1.1.2.1.5
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.1.6
Найдем предел , который является константой по мере приближения к .
Этап 1.1.2.2
Найдем предел , подставив значение для .
Этап 1.1.2.3
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.2.3.1.1
Возведем в степень .
Этап 1.1.2.3.1.2
Добавим и .
Этап 1.1.2.3.1.3
Перепишем в виде .
Этап 1.1.2.3.1.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 1.1.2.3.1.5
Умножим на .
Этап 1.1.2.3.2
Вычтем из .
Этап 1.1.3
Найдем предел знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 1.1.3.1.1
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 1.1.3.1.2
Найдем предел , который является константой по мере приближения к .
Этап 1.1.3.2
Найдем предел , подставив значение для .
Этап 1.1.3.3
Добавим и .
Этап 1.1.3.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.1.4
Выражение содержит деление на . Выражение не определено.
Неопределенные
Этап 1.2
Поскольку является неопределенной формой, применяется правило Лопиталя. Правило Лопиталя гласит, что предел отношения функций равен пределу отношения их производных.
Этап 1.3
Найдем производную числителя и знаменателя.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем числитель и знаменатель.
Этап 1.3.2
По правилу суммы производная по имеет вид .
Этап 1.3.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
С помощью запишем в виде .
Этап 1.3.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.3.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.2.3
Заменим все вхождения на .
Этап 1.3.3.3
По правилу суммы производная по имеет вид .
Этап 1.3.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.3.6
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.3.3.7
Объединим и .
Этап 1.3.3.8
Объединим числители над общим знаменателем.
Этап 1.3.3.9
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.3.3.9.1
Умножим на .
Этап 1.3.3.9.2
Вычтем из .
Этап 1.3.3.10
Вынесем знак минуса перед дробью.
Этап 1.3.3.11
Добавим и .
Этап 1.3.3.12
Объединим и .
Этап 1.3.3.13
Объединим и .
Этап 1.3.3.14
Объединим и .
Этап 1.3.3.15
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.3.3.16
Сократим общий множитель.
Этап 1.3.3.17
Перепишем это выражение.
Этап 1.3.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.5
Добавим и .
Этап 1.3.6
По правилу суммы производная по имеет вид .
Этап 1.3.7
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.8
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.9
Добавим и .
Этап 1.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.5
Перепишем в виде .
Этап 1.6
Умножим на .
Этап 2
Вычислим предел.
Нажмите для увеличения количества этапов...
Этап 2.1
Разобьем предел с помощью правила частного пределов при стремлении к .
Этап 2.2
Внесем предел под знак радикала.
Этап 2.3
Разобьем предел с помощью правила суммы пределов при стремлении к .
Этап 2.4
Вынесем степень в выражении из-под знака предела по правилу степени для пределов.
Этап 2.5
Найдем предел , который является константой по мере приближения к .
Этап 3
Найдем значения пределов, подставив значение для всех вхождений .
Нажмите для увеличения количества этапов...
Этап 3.1
Найдем предел , подставив значение для .
Этап 3.2
Найдем предел , подставив значение для .
Этап 4
Упростим ответ.
Нажмите для увеличения количества этапов...
Этап 4.1
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Возведем в степень .
Этап 4.1.2
Добавим и .
Этап 4.1.3
Перепишем в виде .
Этап 4.1.4
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 4.2
Вынесем знак минуса перед дробью.
Этап 5
Результат можно представить в различном виде.
Точная форма:
Десятичная форма: