Введите задачу...
Математический анализ Примеры
Этап 1
Поскольку является константой относительно , производная по равна .
Этап 2
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3
Этап 3.1
Чтобы применить цепное правило, зададим как .
Этап 3.2
Производная по равна .
Этап 3.3
Заменим все вхождения на .
Этап 4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5
Возведем в степень .
Этап 6
Возведем в степень .
Этап 7
Применим правило степени для объединения показателей.
Этап 8
Этап 8.1
Добавим и .
Этап 8.2
Перенесем влево от .
Этап 9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 10
Умножим на .
Этап 11
Этап 11.1
Применим свойство дистрибутивности.
Этап 11.2
Умножим на .