Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
Применим свойство дистрибутивности.
Этап 1.2
Применим свойство дистрибутивности.
Этап 1.3
Применим свойство дистрибутивности.
Этап 1.4
Перенесем .
Этап 1.5
Перенесем .
Этап 1.6
Умножим на .
Этап 1.7
Применим правило степени для объединения показателей.
Этап 1.8
Добавим и .
Этап 1.9
Умножим на .
Этап 1.10
Умножим на .
Этап 1.11
Умножим на .
Этап 1.12
Перенесем .
Этап 2
Разделим данный интеграл на несколько интегралов.
Этап 3
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
По правилу степени интеграл по имеет вид .
Этап 5
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 6
По правилу степени интеграл по имеет вид .
Этап 7
Поскольку — константа по отношению к , вынесем из-под знака интеграла.
Этап 8
По правилу степени интеграл по имеет вид .
Этап 9
Применим правило дифференцирования постоянных функций.
Этап 10
Этап 10.1
Упростим.
Этап 10.1.1
Объединим и .
Этап 10.1.2
Объединим и .
Этап 10.1.3
Объединим и .
Этап 10.2
Упростим.
Этап 11
Изменим порядок членов.