Математический анализ Примеры

Вычислим интеграл интеграл x^2e^(-x) по x
Этап 1
Проинтегрируем по частям, используя формулу , где и .
Этап 2
Умножим на .
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Умножим на .
Этап 5
Проинтегрируем по частям, используя формулу , где и .
Этап 6
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 7
Упростим.
Нажмите для увеличения количества этапов...
Этап 7.1
Умножим на .
Этап 7.2
Умножим на .
Этап 8
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 8.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 8.1.1
Дифференцируем .
Этап 8.1.2
Поскольку является константой относительно , производная по равна .
Этап 8.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 8.1.4
Умножим на .
Этап 8.2
Переформулируем задачу с помощью и .
Этап 9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Интеграл по имеет вид .
Этап 11
Перепишем в виде .
Этап 12
Заменим все вхождения на .