Введите задачу...
Математический анализ Примеры
Этап 1
Запишем в виде функции.
Этап 2
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Продифференцируем.
Этап 2.2.1
По правилу суммы производная по имеет вид .
Этап 2.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.3
Добавим и .
Этап 2.2.4
Поскольку является константой относительно , производная по равна .
Этап 2.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.6
Умножим на .
Этап 2.2.7
Поскольку является константой относительно , производная по равна .
Этап 2.2.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.9
Умножим на .
Этап 3
Этап 3.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 3.2
Продифференцируем.
Этап 3.2.1
По правилу суммы производная по имеет вид .
Этап 3.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.2.3
Добавим и .
Этап 3.2.4
Поскольку является константой относительно , производная по равна .
Этап 3.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.2.6
Упростим выражение.
Этап 3.2.6.1
Умножим на .
Этап 3.2.6.2
Перенесем влево от .
Этап 3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 3.3.1
Чтобы применить цепное правило, зададим как .
Этап 3.3.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 3.3.3
Заменим все вхождения на .
Этап 3.4
Продифференцируем.
Этап 3.4.1
По правилу суммы производная по имеет вид .
Этап 3.4.2
Поскольку является константой относительно , производная относительно равна .
Этап 3.4.3
Добавим и .
Этап 3.4.4
Поскольку является константой относительно , производная по равна .
Этап 3.4.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.6
Умножим на .
Этап 3.4.7
Поскольку является константой относительно , производная по равна .
Этап 3.4.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 3.4.9
Умножим на .
Этап 3.5
Возведем в степень .
Этап 3.6
Возведем в степень .
Этап 3.7
Применим правило степени для объединения показателей.
Этап 3.8
Добавим и .
Этап 3.9
Изменим порядок членов.
Этап 4
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 5
Этап 5.1
Найдем первую производную.
Этап 5.1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 5.1.1.1
Чтобы применить цепное правило, зададим как .
Этап 5.1.1.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 5.1.1.3
Заменим все вхождения на .
Этап 5.1.2
Продифференцируем.
Этап 5.1.2.1
По правилу суммы производная по имеет вид .
Этап 5.1.2.2
Поскольку является константой относительно , производная относительно равна .
Этап 5.1.2.3
Добавим и .
Этап 5.1.2.4
Поскольку является константой относительно , производная по равна .
Этап 5.1.2.5
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.2.6
Умножим на .
Этап 5.1.2.7
Поскольку является константой относительно , производная по равна .
Этап 5.1.2.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 5.1.2.9
Умножим на .
Этап 5.2
Первая производная по равна .
Этап 6
Этап 6.1
Пусть первая производная равна .
Этап 6.2
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 6.3
Приравняем к , затем решим относительно .
Этап 6.3.1
Приравняем к .
Этап 6.3.2
Решим относительно .
Этап 6.3.2.1
Возьмем натуральный логарифм обеих частей уравнения, чтобы удалить переменную из показателя степени.
Этап 6.3.2.2
Уравнение невозможно решить, так как выражение не определено.
Неопределенные
Этап 6.3.2.3
Нет решения для
Нет решения
Нет решения
Нет решения
Этап 6.4
Приравняем к , затем решим относительно .
Этап 6.4.1
Приравняем к .
Этап 6.4.2
Решим относительно .
Этап 6.4.2.1
Добавим к обеим частям уравнения.
Этап 6.4.2.2
Разделим каждый член на и упростим.
Этап 6.4.2.2.1
Разделим каждый член на .
Этап 6.4.2.2.2
Упростим левую часть.
Этап 6.4.2.2.2.1
Сократим общий множитель .
Этап 6.4.2.2.2.1.1
Сократим общий множитель.
Этап 6.4.2.2.2.1.2
Разделим на .
Этап 6.4.2.2.3
Упростим правую часть.
Этап 6.4.2.2.3.1
Разделим на .
Этап 6.5
Окончательным решением являются все значения, при которых верно.
Этап 7
Этап 7.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 8
Критические точки, которые необходимо вычислить.
Этап 9
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 10
Этап 10.1
Упростим каждый член.
Этап 10.1.1
Упростим каждый член.
Этап 10.1.1.1
Умножим на .
Этап 10.1.1.2
Возведем в степень .
Этап 10.1.1.3
Умножим на .
Этап 10.1.2
Вычтем из .
Этап 10.1.3
Добавим и .
Этап 10.1.4
Перепишем выражение, используя правило отрицательных степеней .
Этап 10.1.5
Умножим на .
Этап 10.1.6
Добавим и .
Этап 10.1.7
Возведение в любую положительную степень дает .
Этап 10.1.8
Умножим на .
Этап 10.1.9
Упростим каждый член.
Этап 10.1.9.1
Умножим на .
Этап 10.1.9.2
Возведем в степень .
Этап 10.1.9.3
Умножим на .
Этап 10.1.10
Вычтем из .
Этап 10.1.11
Добавим и .
Этап 10.1.12
Перепишем выражение, используя правило отрицательных степеней .
Этап 10.1.13
Объединим и .
Этап 10.2
Добавим и .
Этап 11
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 12
Этап 12.1
Заменим в этом выражении переменную на .
Этап 12.2
Упростим результат.
Этап 12.2.1
Упростим каждый член.
Этап 12.2.1.1
Умножим на .
Этап 12.2.1.2
Возведем в степень .
Этап 12.2.1.3
Умножим на .
Этап 12.2.2
Упростим путем сложения и вычитания.
Этап 12.2.2.1
Вычтем из .
Этап 12.2.2.2
Добавим и .
Этап 12.2.3
Перепишем выражение, используя правило отрицательных степеней .
Этап 12.2.4
Окончательный ответ: .
Этап 13
Это локальные экстремумы .
— локальный минимум
Этап 14