Математический анализ Примеры

Вычислим интеграл интеграл натурального логарифма 2x+1 по x
Этап 1
Проинтегрируем по частям, используя формулу , где и .
Этап 2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1
Объединим и .
Этап 2.2
Перенесем влево от .
Этап 3
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 4
Умножим на .
Этап 5
Разделим на .
Нажмите для увеличения количества этапов...
Этап 5.1
Подготовим многочлены к делению. Если слагаемые представляют не все экспоненты, добавим отсутствующий член со значением .
++
Этап 5.2
Разделим член с максимальной степенью в делимом на член с максимальной степенью в делителе .
++
Этап 5.3
Умножим новое частное на делитель.
++
++
Этап 5.4
Выражение необходимо вычесть из делимого, поэтому изменим все знаки в .
++
--
Этап 5.5
После изменения знаков добавим последнее делимое из умноженного многочлена, чтобы найти новое делимое.
++
--
-
Этап 5.6
Окончательный ответ: неполное частное плюс остаток, деленный на делитель.
Этап 6
Разделим данный интеграл на несколько интегралов.
Этап 7
Применим правило дифференцирования постоянных функций.
Этап 8
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 9
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 10
Объединим и .
Этап 11
Пусть . Тогда , следовательно . Перепишем, используя и .
Нажмите для увеличения количества этапов...
Этап 11.1
Пусть . Найдем .
Нажмите для увеличения количества этапов...
Этап 11.1.1
Дифференцируем .
Этап 11.1.2
По правилу суммы производная по имеет вид .
Этап 11.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 11.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 11.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 11.1.3.3
Умножим на .
Этап 11.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 11.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 11.1.4.2
Добавим и .
Этап 11.2
Переформулируем задачу с помощью и .
Этап 12
Упростим.
Нажмите для увеличения количества этапов...
Этап 12.1
Умножим на .
Этап 12.2
Перенесем влево от .
Этап 13
Поскольку  — константа по отношению к , вынесем из-под знака интеграла.
Этап 14
Упростим.
Нажмите для увеличения количества этапов...
Этап 14.1
Умножим на .
Этап 14.2
Умножим на .
Этап 15
Интеграл по имеет вид .
Этап 16
Упростим.
Этап 17
Заменим все вхождения на .
Этап 18
Упростим.
Нажмите для увеличения количества этапов...
Этап 18.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 18.1.1
Объединим и .
Этап 18.1.2
Объединим и .
Этап 18.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 18.3
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 18.3.1
Умножим на .
Этап 18.3.2
Умножим на .
Этап 18.4
Объединим числители над общим знаменателем.
Этап 18.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 18.5.1
Вынесем множитель из .
Этап 18.5.2
Вынесем множитель из .
Этап 18.5.3
Сократим общий множитель.
Этап 18.5.4
Перепишем это выражение.
Этап 18.6
Перенесем влево от .
Этап 19
Изменим порядок членов.