Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале f(x)=9x^(2/3)-x on 0 , 729
on ,
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.1.2.4
Объединим и .
Этап 1.1.1.2.5
Объединим числители над общим знаменателем.
Этап 1.1.1.2.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.6.1
Умножим на .
Этап 1.1.1.2.6.2
Вычтем из .
Этап 1.1.1.2.7
Вынесем знак минуса перед дробью.
Этап 1.1.1.2.8
Объединим и .
Этап 1.1.1.2.9
Объединим и .
Этап 1.1.1.2.10
Умножим на .
Этап 1.1.1.2.11
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.1.1.2.12
Вынесем множитель из .
Этап 1.1.1.2.13
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.13.1
Вынесем множитель из .
Этап 1.1.1.2.13.2
Сократим общий множитель.
Этап 1.1.1.2.13.3
Перепишем это выражение.
Этап 1.1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3.3
Умножим на .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Добавим к обеим частям уравнения.
Этап 1.2.3
Найдем НОК знаменателей членов уравнения.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Нахождение НОЗ для списка значений — это то же самое, что найти НОК для знаменателей этих значений.
Этап 1.2.3.2
НОК единицы и любого выражения есть это выражение.
Этап 1.2.4
Каждый член в умножим на , чтобы убрать дроби.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Умножим каждый член на .
Этап 1.2.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1.1
Сократим общий множитель.
Этап 1.2.4.2.1.2
Перепишем это выражение.
Этап 1.2.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.3.1
Умножим на .
Этап 1.2.5
Решим уравнение.
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Перепишем уравнение в виде .
Этап 1.2.5.2
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 1.2.5.3
Упростим показатель степени.
Нажмите для увеличения количества этапов...
Этап 1.2.5.3.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.5.3.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.5.3.1.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.2.5.3.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 1.2.5.3.1.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.5.3.1.1.1.2.1
Сократим общий множитель.
Этап 1.2.5.3.1.1.1.2.2
Перепишем это выражение.
Этап 1.2.5.3.1.1.2
Упростим.
Этап 1.2.5.3.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.5.3.2.1
Возведем в степень .
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Преобразуем выражения, перейдя от дробных степеней к радикалам.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 1.3.1.2
Любое число, возведенное в степень , является основанием.
Этап 1.3.2
Зададим знаменатель в равным , чтобы узнать, где данное выражение не определено.
Этап 1.3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Чтобы избавиться от радикала в левой части уравнения, возведем обе части уравнения в куб.
Этап 1.3.3.2
Упростим каждую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.1
С помощью запишем в виде .
Этап 1.3.3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.2.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.2.1.1.1
Применим правило степени и перемножим показатели, .
Этап 1.3.3.2.2.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.2.1.1.2.1
Сократим общий множитель.
Этап 1.3.3.2.2.1.1.2.2
Перепишем это выражение.
Этап 1.3.3.2.2.1.2
Упростим.
Этап 1.3.3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.3.1
Возведение в любую положительную степень дает .
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1
Перепишем в виде .
Этап 1.4.1.2.1.2
Применим правило степени и перемножим показатели, .
Этап 1.4.1.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.3.1
Сократим общий множитель.
Этап 1.4.1.2.1.3.2
Перепишем это выражение.
Этап 1.4.1.2.1.4
Возведем в степень .
Этап 1.4.1.2.1.5
Умножим на .
Этап 1.4.1.2.1.6
Умножим на .
Этап 1.4.1.2.2
Вычтем из .
Этап 1.4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1
Перепишем в виде .
Этап 1.4.2.2.1.2
Применим правило степени и перемножим показатели, .
Этап 1.4.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.2.1
Сократим общий множитель.
Этап 1.4.2.2.2.2
Перепишем это выражение.
Этап 1.4.2.2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.3.1
Возведение в любую положительную степень дает .
Этап 1.4.2.2.3.2
Умножим на .
Этап 1.4.2.2.3.3
Вычтем из .
Этап 1.4.3
Перечислим все точки.
Этап 2
Вычислим на включенных конечных точках.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Подставим вместо .
Этап 2.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Перепишем в виде .
Этап 2.1.2.1.2
Применим правило степени и перемножим показатели, .
Этап 2.1.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Сократим общий множитель.
Этап 2.1.2.2.2
Перепишем это выражение.
Этап 2.1.2.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.1.2.3.1
Возведение в любую положительную степень дает .
Этап 2.1.2.3.2
Умножим на .
Этап 2.1.2.3.3
Вычтем из .
Этап 2.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Подставим вместо .
Этап 2.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Перепишем в виде .
Этап 2.2.2.1.2
Применим правило степени и перемножим показатели, .
Этап 2.2.2.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.3.1
Сократим общий множитель.
Этап 2.2.2.1.3.2
Перепишем это выражение.
Этап 2.2.2.1.4
Возведем в степень .
Этап 2.2.2.1.5
Умножим на .
Этап 2.2.2.1.6
Умножим на .
Этап 2.2.2.2
Вычтем из .
Этап 2.3
Перечислим все точки.
Этап 3
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 4