Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале f(x)=sin(x)^2 on [0,pi]
on
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.1.3
Заменим все вхождения на .
Этап 1.1.1.2
Производная по равна .
Этап 1.1.1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Изменим порядок множителей в .
Этап 1.1.1.3.2
Изменим порядок и .
Этап 1.1.1.3.3
Изменим порядок и .
Этап 1.1.1.3.4
Применим формулу двойного угла для синуса.
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 1.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.3.1
Точное значение : .
Этап 1.2.4
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Разделим каждый член на .
Этап 1.2.4.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1.1
Сократим общий множитель.
Этап 1.2.4.2.1.2
Разделим на .
Этап 1.2.4.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.3.1
Разделим на .
Этап 1.2.5
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 1.2.6
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.6.1.1
Умножим на .
Этап 1.2.6.1.2
Добавим и .
Этап 1.2.6.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.1
Разделим каждый член на .
Этап 1.2.6.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.2.1.1
Сократим общий множитель.
Этап 1.2.6.2.2.1.2
Разделим на .
Этап 1.2.7
Найдем период .
Нажмите для увеличения количества этапов...
Этап 1.2.7.1
Период функции можно вычислить по формуле .
Этап 1.2.7.2
Заменим на в формуле периода.
Этап 1.2.7.3
Абсолютное значение ― это расстояние между числом и нулем. Расстояние между и равно .
Этап 1.2.7.4
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.7.4.1
Сократим общий множитель.
Этап 1.2.7.4.2
Разделим на .
Этап 1.2.8
Период функции равен . Поэтому значения повторяются через каждые рад. в обоих направлениях.
, для любого целого
Этап 1.2.9
Объединим ответы.
, для любого целого
, для любого целого
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Точное значение : .
Этап 1.4.1.2.2
Возведение в любую положительную степень дает .
Этап 1.4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Точное значение : .
Этап 1.4.2.2.2
Единица в любой степени равна единице.
Этап 1.4.3
Перечислим все точки.
, для любого целого
, для любого целого
, для любого целого
Этап 2
Исключим точки, которые не принадлежат данному интервалу.
Этап 3
Определим точки возможного максимума или минимума с помощью первой производной.
Нажмите для увеличения количества этапов...
Этап 3.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 3.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.2.1
Заменим в этом выражении переменную на .
Этап 3.2.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Умножим на .
Этап 3.2.2.2
Найдем значение .
Этап 3.2.2.3
Окончательный ответ: .
Этап 3.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Умножим на .
Этап 3.3.2.2
Найдем значение .
Этап 3.3.2.3
Окончательный ответ: .
Этап 3.4
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.4.1
Заменим в этом выражении переменную на .
Этап 3.4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Умножим на .
Этап 3.4.2.2
Найдем значение .
Этап 3.4.2.3
Окончательный ответ: .
Этап 3.5
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.5.1
Заменим в этом выражении переменную на .
Этап 3.5.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.5.2.1
Умножим на .
Этап 3.5.2.2
Найдем значение .
Этап 3.5.2.3
Окончательный ответ: .
Этап 3.6
Поскольку первая производная не меняет знак в окрестности , в этой точке нет ни локального максимума, ни локального минимума.
Не локальный максимум или минимум
Этап 3.7
Поскольку первая производная меняет знак с положительного на отрицательный в окрестности ,  — локальный максимум.
 — локальный максимум
Этап 3.8
Поскольку первая производная не меняет знак в окрестности , в этой точке нет ни локального максимума, ни локального минимума.
Не локальный максимум или минимум
Этап 3.9
Это локальные экстремумы .
 — локальный максимум
 — локальный максимум
Этап 4
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Нет абсолютного минимума
Этап 5