Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Найдем первую производную.
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Найдем значение .
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.1.3
Найдем значение .
Этап 1.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3.3
Умножим на .
Этап 1.1.1.4
Найдем значение .
Этап 1.1.1.4.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.4.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.4.3
Умножим на .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Этап 1.2.2.1
Вынесем множитель из .
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Вынесем множитель из .
Этап 1.2.2.1.3
Вынесем множитель из .
Этап 1.2.2.1.4
Вынесем множитель из .
Этап 1.2.2.1.5
Вынесем множитель из .
Этап 1.2.2.2
Разложим на множители.
Этап 1.2.2.2.1
Разложим на множители, используя метод группировки.
Этап 1.2.2.2.1.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 1.2.2.2.1.2
Запишем разложение на множители, используя данные целые числа.
Этап 1.2.2.2.2
Избавимся от ненужных скобок.
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Вычтем из обеих частей уравнения.
Этап 1.2.5
Приравняем к , затем решим относительно .
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Вычтем из обеих частей уравнения.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Найдем значения, при которых производная не определена.
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Этап 1.4.1
Найдем значение в .
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Этап 1.4.1.2.1
Упростим каждый член.
Этап 1.4.1.2.1.1
Возведем в степень .
Этап 1.4.1.2.1.2
Умножим на .
Этап 1.4.1.2.1.3
Возведем в степень .
Этап 1.4.1.2.1.4
Умножим на .
Этап 1.4.1.2.1.5
Умножим на .
Этап 1.4.1.2.2
Упростим путем сложения и вычитания.
Этап 1.4.1.2.2.1
Добавим и .
Этап 1.4.1.2.2.2
Вычтем из .
Этап 1.4.2
Найдем значение в .
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Этап 1.4.2.2.1
Упростим каждый член.
Этап 1.4.2.2.1.1
Возведем в степень .
Этап 1.4.2.2.1.2
Умножим на .
Этап 1.4.2.2.1.3
Возведем в степень .
Этап 1.4.2.2.1.4
Умножим на .
Этап 1.4.2.2.1.5
Умножим на .
Этап 1.4.2.2.2
Упростим путем сложения и вычитания.
Этап 1.4.2.2.2.1
Добавим и .
Этап 1.4.2.2.2.2
Вычтем из .
Этап 1.4.3
Перечислим все точки.
Этап 2
Этап 2.1
Найдем значение в .
Этап 2.1.1
Подставим вместо .
Этап 2.1.2
Упростим.
Этап 2.1.2.1
Упростим каждый член.
Этап 2.1.2.1.1
Возведем в степень .
Этап 2.1.2.1.2
Умножим на .
Этап 2.1.2.1.3
Возведем в степень .
Этап 2.1.2.1.4
Умножим на .
Этап 2.1.2.1.5
Умножим на .
Этап 2.1.2.2
Упростим путем сложения и вычитания.
Этап 2.1.2.2.1
Добавим и .
Этап 2.1.2.2.2
Вычтем из .
Этап 2.2
Найдем значение в .
Этап 2.2.1
Подставим вместо .
Этап 2.2.2
Упростим.
Этап 2.2.2.1
Упростим каждый член.
Этап 2.2.2.1.1
Возведение в любую положительную степень дает .
Этап 2.2.2.1.2
Умножим на .
Этап 2.2.2.1.3
Возведение в любую положительную степень дает .
Этап 2.2.2.1.4
Умножим на .
Этап 2.2.2.1.5
Умножим на .
Этап 2.2.2.2
Упростим путем добавления чисел.
Этап 2.2.2.2.1
Добавим и .
Этап 2.2.2.2.2
Добавим и .
Этап 2.3
Перечислим все точки.
Этап 3
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 4