Введите задачу...
Математический анализ Примеры
,
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Найдем первую производную.
Этап 1.1.1.1
Продифференцируем.
Этап 1.1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2
Найдем значение .
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.1.3
Найдем значение .
Этап 1.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3.3
Умножим на .
Этап 1.1.1.4
Продифференцируем, используя правило константы.
Этап 1.1.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.4.2
Добавим и .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Разложим левую часть уравнения на множители.
Этап 1.2.2.1
Вынесем множитель из .
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Вынесем множитель из .
Этап 1.2.2.1.3
Вынесем множитель из .
Этап 1.2.2.1.4
Вынесем множитель из .
Этап 1.2.2.1.5
Вынесем множитель из .
Этап 1.2.2.2
Разложим на множители, используя правило полных квадратов.
Этап 1.2.2.2.1
Перепишем в виде .
Этап 1.2.2.2.2
Проверим, чтобы средний член был равен удвоенному произведению корней из первого и третьего членов.
Этап 1.2.2.2.3
Перепишем многочлен.
Этап 1.2.2.2.4
Разложим на множители, используя правило выделения полного квадрата из квадратного трехчлена , где и .
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к .
Этап 1.2.5
Приравняем к , затем решим относительно .
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Решим относительно .
Этап 1.2.5.2.1
Приравняем к .
Этап 1.2.5.2.2
Вычтем из обеих частей уравнения.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Найдем значения, при которых производная не определена.
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Этап 1.4.1
Найдем значение в .
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Этап 1.4.1.2.1
Упростим каждый член.
Этап 1.4.1.2.1.1
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.2
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.3
Умножим на .
Этап 1.4.1.2.1.4
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.5
Умножим на .
Этап 1.4.1.2.2
Упростим путем добавления чисел.
Этап 1.4.1.2.2.1
Добавим и .
Этап 1.4.1.2.2.2
Добавим и .
Этап 1.4.1.2.2.3
Добавим и .
Этап 1.4.2
Найдем значение в .
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Этап 1.4.2.2.1
Упростим каждый член.
Этап 1.4.2.2.1.1
Возведем в степень .
Этап 1.4.2.2.1.2
Возведем в степень .
Этап 1.4.2.2.1.3
Умножим на .
Этап 1.4.2.2.1.4
Возведем в степень .
Этап 1.4.2.2.1.5
Умножим на .
Этап 1.4.2.2.2
Упростим путем сложения и вычитания.
Этап 1.4.2.2.2.1
Вычтем из .
Этап 1.4.2.2.2.2
Добавим и .
Этап 1.4.2.2.2.3
Добавим и .
Этап 1.4.3
Перечислим все точки.
Этап 2
Этап 2.1
Найдем значение в .
Этап 2.1.1
Подставим вместо .
Этап 2.1.2
Упростим.
Этап 2.1.2.1
Упростим каждый член.
Этап 2.1.2.1.1
Возведем в степень .
Этап 2.1.2.1.2
Возведем в степень .
Этап 2.1.2.1.3
Умножим на .
Этап 2.1.2.1.4
Возведем в степень .
Этап 2.1.2.1.5
Умножим на .
Этап 2.1.2.2
Упростим путем сложения и вычитания.
Этап 2.1.2.2.1
Вычтем из .
Этап 2.1.2.2.2
Добавим и .
Этап 2.1.2.2.3
Добавим и .
Этап 2.2
Найдем значение в .
Этап 2.2.1
Подставим вместо .
Этап 2.2.2
Упростим.
Этап 2.2.2.1
Упростим каждый член.
Этап 2.2.2.1.1
Единица в любой степени равна единице.
Этап 2.2.2.1.2
Единица в любой степени равна единице.
Этап 2.2.2.1.3
Умножим на .
Этап 2.2.2.1.4
Единица в любой степени равна единице.
Этап 2.2.2.1.5
Умножим на .
Этап 2.2.2.2
Упростим путем добавления чисел.
Этап 2.2.2.2.1
Добавим и .
Этап 2.2.2.2.2
Добавим и .
Этап 2.2.2.2.3
Добавим и .
Этап 2.3
Перечислим все точки.
Этап 3
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 4