Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале f(x)=x(x-10)^2 ; [0,10]
;
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Перепишем в виде .
Этап 1.1.1.2
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Применим свойство дистрибутивности.
Этап 1.1.1.2.2
Применим свойство дистрибутивности.
Этап 1.1.1.2.3
Применим свойство дистрибутивности.
Этап 1.1.1.3
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1.1
Умножим на .
Этап 1.1.1.3.1.2
Перенесем влево от .
Этап 1.1.1.3.1.3
Умножим на .
Этап 1.1.1.3.2
Вычтем из .
Этап 1.1.1.4
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 1.1.1.5
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.5.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.5.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.5.3
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.5.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.5.5
Умножим на .
Этап 1.1.1.5.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.5.7
Добавим и .
Этап 1.1.1.5.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.5.9
Умножим на .
Этап 1.1.1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.1.1.6.1
Применим свойство дистрибутивности.
Этап 1.1.1.6.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.1.1.6.2.1
Возведем в степень .
Этап 1.1.1.6.2.2
Возведем в степень .
Этап 1.1.1.6.2.3
Применим правило степени для объединения показателей.
Этап 1.1.1.6.2.4
Добавим и .
Этап 1.1.1.6.2.5
Перенесем влево от .
Этап 1.1.1.6.2.6
Добавим и .
Этап 1.1.1.6.2.7
Вычтем из .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Запишем как плюс
Этап 1.2.2.1.3
Применим свойство дистрибутивности.
Этап 1.2.2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.2.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.2.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Добавим к обеим частям уравнения.
Этап 1.2.4.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.1
Разделим каждый член на .
Этап 1.2.4.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.4.2.2.2.1.2
Разделим на .
Этап 1.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Добавим к обеим частям уравнения.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.4.1.2.2
Объединим и .
Этап 1.4.1.2.3
Объединим числители над общим знаменателем.
Этап 1.4.1.2.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.4.1
Умножим на .
Этап 1.4.1.2.4.2
Вычтем из .
Этап 1.4.1.2.5
Вынесем знак минуса перед дробью.
Этап 1.4.1.2.6
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.6.1
Применим правило умножения к .
Этап 1.4.1.2.6.2
Применим правило умножения к .
Этап 1.4.1.2.7
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.7.1
Возведем в степень .
Этап 1.4.1.2.7.2
Умножим на .
Этап 1.4.1.2.8
Объединим.
Этап 1.4.1.2.9
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.9.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.9.1.1
Возведем в степень .
Этап 1.4.1.2.9.1.2
Применим правило степени для объединения показателей.
Этап 1.4.1.2.9.2
Добавим и .
Этап 1.4.1.2.10
Возведем в степень .
Этап 1.4.1.2.11
Возведем в степень .
Этап 1.4.1.2.12
Умножим на .
Этап 1.4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Вычтем из .
Этап 1.4.2.2.2
Возведение в любую положительную степень дает .
Этап 1.4.2.2.3
Умножим на .
Этап 1.4.3
Перечислим все точки.
Этап 2
Вычислим на включенных конечных точках.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Подставим вместо .
Этап 2.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Вычтем из .
Этап 2.1.2.2
Возведем в степень .
Этап 2.1.2.3
Умножим на .
Этап 2.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Подставим вместо .
Этап 2.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Вычтем из .
Этап 2.2.2.2
Возведение в любую положительную степень дает .
Этап 2.2.2.3
Умножим на .
Этап 2.3
Перечислим все точки.
Этап 3
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 4