Введите задачу...
Математический анализ Примеры
Этап 1
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Умножим на .
Этап 1.3
Найдем значение .
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Продифференцируем, используя правило константы.
Этап 1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.4.2
Добавим и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Найдем первую производную.
Этап 4.1.1
По правилу суммы производная по имеет вид .
Этап 4.1.2
Найдем значение .
Этап 4.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.2.3
Умножим на .
Этап 4.1.3
Найдем значение .
Этап 4.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.3
Умножим на .
Этап 4.1.4
Продифференцируем, используя правило константы.
Этап 4.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.4.2
Добавим и .
Этап 4.2
Первая производная по равна .
Этап 5
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Вынесем множитель из .
Этап 5.2.1
Вынесем множитель из .
Этап 5.2.2
Вынесем множитель из .
Этап 5.2.3
Вынесем множитель из .
Этап 5.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 5.4
Приравняем к , затем решим относительно .
Этап 5.4.1
Приравняем к .
Этап 5.4.2
Решим относительно .
Этап 5.4.2.1
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.4.2.2
Упростим .
Этап 5.4.2.2.1
Перепишем в виде .
Этап 5.4.2.2.2
Вынесем члены из-под знака корня, предполагая, что вещественные числа являются положительными.
Этап 5.4.2.2.3
Плюс или минус равно .
Этап 5.5
Приравняем к , затем решим относительно .
Этап 5.5.1
Приравняем к .
Этап 5.5.2
Вычтем из обеих частей уравнения.
Этап 5.6
Окончательным решением являются все значения, при которых верно.
Этап 6
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Этап 9.1
Упростим каждый член.
Этап 9.1.1
Возведение в любую положительную степень дает .
Этап 9.1.2
Умножим на .
Этап 9.1.3
Умножим на .
Этап 9.2
Добавим и .
Этап 10
Этап 10.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 10.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.2.1
Заменим в этом выражении переменную на .
Этап 10.2.2
Упростим результат.
Этап 10.2.2.1
Упростим каждый член.
Этап 10.2.2.1.1
Возведем в степень .
Этап 10.2.2.1.2
Умножим на .
Этап 10.2.2.1.3
Возведем в степень .
Этап 10.2.2.1.4
Умножим на .
Этап 10.2.2.2
Добавим и .
Этап 10.2.2.3
Окончательный ответ: .
Этап 10.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.3.1
Заменим в этом выражении переменную на .
Этап 10.3.2
Упростим результат.
Этап 10.3.2.1
Упростим каждый член.
Этап 10.3.2.1.1
Возведем в степень .
Этап 10.3.2.1.2
Умножим на .
Этап 10.3.2.1.3
Возведем в степень .
Этап 10.3.2.1.4
Умножим на .
Этап 10.3.2.2
Добавим и .
Этап 10.3.2.3
Окончательный ответ: .
Этап 10.4
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Этап 10.4.1
Заменим в этом выражении переменную на .
Этап 10.4.2
Упростим результат.
Этап 10.4.2.1
Упростим каждый член.
Этап 10.4.2.1.1
Возведем в степень .
Этап 10.4.2.1.2
Умножим на .
Этап 10.4.2.1.3
Возведем в степень .
Этап 10.4.2.1.4
Умножим на .
Этап 10.4.2.2
Добавим и .
Этап 10.4.2.3
Окончательный ответ: .
Этап 10.5
Поскольку первая производная меняет знак с отрицательного на положительный в окрестности , — локальный минимум.
— локальный минимум
Этап 10.6
Поскольку первая производная не меняет знак в окрестности , в этой точке нет ни локального максимума, ни локального минимума.
Не локальный максимум или минимум
Этап 10.7
Это локальные экстремумы .
— локальный минимум
— локальный минимум
Этап 11