Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале p=1/12x^2-14x+588 , 0<=x<=84
,
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Объединим и .
Этап 1.1.1.2.4
Объединим и .
Этап 1.1.1.2.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.5.1
Вынесем множитель из .
Этап 1.1.1.2.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.5.2.1
Вынесем множитель из .
Этап 1.1.1.2.5.2.2
Сократим общий множитель.
Этап 1.1.1.2.5.2.3
Перепишем это выражение.
Этап 1.1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3.3
Умножим на .
Этап 1.1.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.4.2
Добавим и .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Добавим к обеим частям уравнения.
Этап 1.2.3
Умножим обе части уравнения на .
Этап 1.2.4
Упростим обе части уравнения.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1.1.1
Сократим общий множитель.
Этап 1.2.4.1.1.2
Перепишем это выражение.
Этап 1.2.4.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Умножим на .
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1
Возведем в степень .
Этап 1.4.1.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.2.1
Вынесем множитель из .
Этап 1.4.1.2.1.2.2
Сократим общий множитель.
Этап 1.4.1.2.1.2.3
Перепишем это выражение.
Этап 1.4.1.2.1.3
Умножим на .
Этап 1.4.1.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.2.1
Вычтем из .
Этап 1.4.1.2.2.2
Добавим и .
Этап 1.4.2
Перечислим все точки.
Этап 2
Вычислим на включенных конечных точках.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Подставим вместо .
Этап 2.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Возведение в любую положительную степень дает .
Этап 2.1.2.1.2
Умножим на .
Этап 2.1.2.1.3
Умножим на .
Этап 2.1.2.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Добавим и .
Этап 2.1.2.2.2
Добавим и .
Этап 2.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Подставим вместо .
Этап 2.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Возведем в степень .
Этап 2.2.2.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.2.1
Вынесем множитель из .
Этап 2.2.2.1.2.2
Сократим общий множитель.
Этап 2.2.2.1.2.3
Перепишем это выражение.
Этап 2.2.2.1.3
Умножим на .
Этап 2.2.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 2.2.2.2.1
Вычтем из .
Этап 2.2.2.2.2
Добавим и .
Этап 2.3
Перечислим все точки.
Этап 3
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 4