Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале f(x)=(4x)/(x^2+1)
Этап 1
Найдем первую производную функции.
Нажмите для увеличения количества этапов...
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.2
Умножим на .
Этап 1.3.3
По правилу суммы производная по имеет вид .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.3.6.1
Добавим и .
Этап 1.3.6.2
Умножим на .
Этап 1.4
Возведем в степень .
Этап 1.5
Возведем в степень .
Этап 1.6
Применим правило степени для объединения показателей.
Этап 1.7
Добавим и .
Этап 1.8
Вычтем из .
Этап 1.9
Объединим и .
Этап 1.10
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.10.1
Применим свойство дистрибутивности.
Этап 1.10.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.10.2.1
Умножим на .
Этап 1.10.2.2
Умножим на .
Этап 2
Найдем вторую производную функции.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.2.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.1.1
Применим правило степени и перемножим показатели, .
Этап 2.2.1.2
Умножим на .
Этап 2.2.2
По правилу суммы производная по имеет вид .
Этап 2.2.3
Поскольку является константой относительно , производная по равна .
Этап 2.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.5
Умножим на .
Этап 2.2.6
Поскольку является константой относительно , производная относительно равна .
Этап 2.2.7
Добавим и .
Этап 2.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Заменим все вхождения на .
Этап 2.4
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Умножим на .
Этап 2.4.2
По правилу суммы производная по имеет вид .
Этап 2.4.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.4.4
Поскольку является константой относительно , производная относительно равна .
Этап 2.4.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 2.4.5.1
Добавим и .
Этап 2.4.5.2
Перенесем влево от .
Этап 2.4.5.3
Умножим на .
Этап 2.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Применим свойство дистрибутивности.
Этап 2.5.2
Применим свойство дистрибутивности.
Этап 2.5.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.1
Перепишем, используя свойство коммутативности умножения.
Этап 2.5.3.1.2
Перепишем в виде .
Этап 2.5.3.1.3
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.3.1
Применим свойство дистрибутивности.
Этап 2.5.3.1.3.2
Применим свойство дистрибутивности.
Этап 2.5.3.1.3.3
Применим свойство дистрибутивности.
Этап 2.5.3.1.4
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.4.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.4.1.1.1
Применим правило степени для объединения показателей.
Этап 2.5.3.1.4.1.1.2
Добавим и .
Этап 2.5.3.1.4.1.2
Умножим на .
Этап 2.5.3.1.4.1.3
Умножим на .
Этап 2.5.3.1.4.1.4
Умножим на .
Этап 2.5.3.1.4.2
Добавим и .
Этап 2.5.3.1.5
Применим свойство дистрибутивности.
Этап 2.5.3.1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.6.1
Умножим на .
Этап 2.5.3.1.6.2
Умножим на .
Этап 2.5.3.1.7
Применим свойство дистрибутивности.
Этап 2.5.3.1.8
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.8.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.8.1.1
Перенесем .
Этап 2.5.3.1.8.1.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.8.1.2.1
Возведем в степень .
Этап 2.5.3.1.8.1.2.2
Применим правило степени для объединения показателей.
Этап 2.5.3.1.8.1.3
Добавим и .
Этап 2.5.3.1.8.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.8.2.1
Перенесем .
Этап 2.5.3.1.8.2.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.8.2.2.1
Возведем в степень .
Этап 2.5.3.1.8.2.2.2
Применим правило степени для объединения показателей.
Этап 2.5.3.1.8.2.3
Добавим и .
Этап 2.5.3.1.9
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.9.1
Умножим на .
Этап 2.5.3.1.9.2
Умножим на .
Этап 2.5.3.1.10
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.10.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.10.1.1
Умножим на .
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.10.1.1.1
Возведем в степень .
Этап 2.5.3.1.10.1.1.2
Применим правило степени для объединения показателей.
Этап 2.5.3.1.10.1.2
Добавим и .
Этап 2.5.3.1.10.2
Умножим на .
Этап 2.5.3.1.11
Развернем , используя метод «первые-внешние-внутренние-последние».
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.11.1
Применим свойство дистрибутивности.
Этап 2.5.3.1.11.2
Применим свойство дистрибутивности.
Этап 2.5.3.1.11.3
Применим свойство дистрибутивности.
Этап 2.5.3.1.12
Упростим и объединим подобные члены.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.12.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.12.1.1
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.12.1.1.1
Перенесем .
Этап 2.5.3.1.12.1.1.2
Применим правило степени для объединения показателей.
Этап 2.5.3.1.12.1.1.3
Добавим и .
Этап 2.5.3.1.12.1.2
Умножим на , сложив экспоненты.
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.12.1.2.1
Перенесем .
Этап 2.5.3.1.12.1.2.2
Умножим на .
Нажмите для увеличения количества этапов...
Этап 2.5.3.1.12.1.2.2.1
Возведем в степень .
Этап 2.5.3.1.12.1.2.2.2
Применим правило степени для объединения показателей.
Этап 2.5.3.1.12.1.2.3
Добавим и .
Этап 2.5.3.1.12.2
Вычтем из .
Этап 2.5.3.1.12.3
Добавим и .
Этап 2.5.3.2
Добавим и .
Этап 2.5.3.3
Вычтем из .
Этап 2.5.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.5.4.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.5.4.1.1
Вынесем множитель из .
Этап 2.5.4.1.2
Вынесем множитель из .
Этап 2.5.4.1.3
Вынесем множитель из .
Этап 2.5.4.1.4
Вынесем множитель из .
Этап 2.5.4.1.5
Вынесем множитель из .
Этап 2.5.4.2
Перепишем в виде .
Этап 2.5.4.3
Пусть . Подставим вместо для всех.
Этап 2.5.4.4
Разложим на множители, используя метод группировки.
Нажмите для увеличения количества этапов...
Этап 2.5.4.4.1
Рассмотрим форму . Найдем пару целых чисел, произведение которых равно , а сумма — . В данном случае произведение чисел равно , а сумма — .
Этап 2.5.4.4.2
Запишем разложение на множители, используя данные целые числа.
Этап 2.5.4.5
Заменим все вхождения на .
Этап 2.5.5
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.5.5.1
Вынесем множитель из .
Этап 2.5.5.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.5.5.2.1
Вынесем множитель из .
Этап 2.5.5.2.2
Сократим общий множитель.
Этап 2.5.5.2.3
Перепишем это выражение.
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 4.1.1
Поскольку является константой относительно , производная по равна .
Этап 4.1.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 4.1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 4.1.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.2
Умножим на .
Этап 4.1.3.3
По правилу суммы производная по имеет вид .
Этап 4.1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 4.1.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 4.1.3.6
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 4.1.3.6.1
Добавим и .
Этап 4.1.3.6.2
Умножим на .
Этап 4.1.4
Возведем в степень .
Этап 4.1.5
Возведем в степень .
Этап 4.1.6
Применим правило степени для объединения показателей.
Этап 4.1.7
Добавим и .
Этап 4.1.8
Вычтем из .
Этап 4.1.9
Объединим и .
Этап 4.1.10
Упростим.
Нажмите для увеличения количества этапов...
Этап 4.1.10.1
Применим свойство дистрибутивности.
Этап 4.1.10.2
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 4.1.10.2.1
Умножим на .
Этап 4.1.10.2.2
Умножим на .
Этап 4.2
Первая производная по равна .
Этап 5
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 5.1
Пусть первая производная равна .
Этап 5.2
Приравняем числитель к нулю.
Этап 5.3
Решим уравнение относительно .
Нажмите для увеличения количества этапов...
Этап 5.3.1
Вычтем из обеих частей уравнения.
Этап 5.3.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 5.3.2.1
Разделим каждый член на .
Этап 5.3.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 5.3.2.2.1.1
Сократим общий множитель.
Этап 5.3.2.2.1.2
Разделим на .
Этап 5.3.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 5.3.2.3.1
Разделим на .
Этап 5.3.3
Возьмем указанный корень от обеих частей уравнения, чтобы исключить член со степенью в левой части.
Этап 5.3.4
Любой корень из равен .
Этап 5.3.5
Полное решение является результатом как положительных, так и отрицательных частей решения.
Нажмите для увеличения количества этапов...
Этап 5.3.5.1
Сначала с помощью положительного значения найдем первое решение.
Этап 5.3.5.2
Затем, используя отрицательное значение , найдем второе решение.
Этап 5.3.5.3
Полное решение является результатом как положительных, так и отрицательных частей решения.
Этап 6
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 6.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 7
Критические точки, которые необходимо вычислить.
Этап 8
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 9
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 9.1
Умножим на .
Этап 9.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 9.2.1
Единица в любой степени равна единице.
Этап 9.2.2
Добавим и .
Этап 9.2.3
Возведем в степень .
Этап 9.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 9.3.1
Единица в любой степени равна единице.
Этап 9.3.2
Вычтем из .
Этап 9.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 9.4.1
Умножим на .
Этап 9.4.2
Разделим на .
Этап 10
 — локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
 — локальный максимум
Этап 11
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 11.1
Заменим в этом выражении переменную на .
Этап 11.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 11.2.1
Умножим на .
Этап 11.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 11.2.2.1
Единица в любой степени равна единице.
Этап 11.2.2.2
Добавим и .
Этап 11.2.3
Разделим на .
Этап 11.2.4
Окончательный ответ: .
Этап 12
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 13
Найдем вторую производную.
Нажмите для увеличения количества этапов...
Этап 13.1
Умножим на .
Этап 13.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 13.2.1
Возведем в степень .
Этап 13.2.2
Добавим и .
Этап 13.2.3
Возведем в степень .
Этап 13.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 13.3.1
Возведем в степень .
Этап 13.3.2
Вычтем из .
Этап 13.4
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 13.4.1
Умножим на .
Этап 13.4.2
Разделим на .
Этап 14
 — локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
 — локальный минимум
Этап 15
Найдем значение y, если .
Нажмите для увеличения количества этапов...
Этап 15.1
Заменим в этом выражении переменную на .
Этап 15.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 15.2.1
Умножим на .
Этап 15.2.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 15.2.2.1
Возведем в степень .
Этап 15.2.2.2
Добавим и .
Этап 15.2.3
Разделим на .
Этап 15.2.4
Окончательный ответ: .
Этап 16
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
Этап 17