Введите задачу...
Математический анализ Примеры
on ,
Этап 1
Этап 1.1
Найдем первую производную.
Этап 1.1.1
Найдем первую производную.
Этап 1.1.1.1
Продифференцируем.
Этап 1.1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2
Найдем значение .
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.1.2.4
Объединим и .
Этап 1.1.1.2.5
Умножим на .
Этап 1.1.1.2.6
Объединим и .
Этап 1.1.1.2.7
Сократим общий множитель и .
Этап 1.1.1.2.7.1
Вынесем множитель из .
Этап 1.1.1.2.7.2
Сократим общие множители.
Этап 1.1.1.2.7.2.1
Вынесем множитель из .
Этап 1.1.1.2.7.2.2
Сократим общий множитель.
Этап 1.1.1.2.7.2.3
Перепишем это выражение.
Этап 1.1.1.2.7.2.4
Разделим на .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Вынесем множитель из .
Этап 1.2.2.1
Вынесем множитель из .
Этап 1.2.2.2
Вынесем множитель из .
Этап 1.2.2.3
Вынесем множитель из .
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к .
Этап 1.2.5
Приравняем к , затем решим относительно .
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Добавим к обеим частям уравнения.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Найдем значения, при которых производная не определена.
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Этап 1.4.1
Найдем значение в .
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Этап 1.4.1.2.1
Упростим каждый член.
Этап 1.4.1.2.1.1
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.2
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.3
Умножим .
Этап 1.4.1.2.1.3.1
Умножим на .
Этап 1.4.1.2.1.3.2
Умножим на .
Этап 1.4.1.2.2
Добавим и .
Этап 1.4.2
Найдем значение в .
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Этап 1.4.2.2.1
Упростим каждый член.
Этап 1.4.2.2.1.1
Единица в любой степени равна единице.
Этап 1.4.2.2.1.2
Единица в любой степени равна единице.
Этап 1.4.2.2.1.3
Умножим на .
Этап 1.4.2.2.2
Упростим выражение.
Этап 1.4.2.2.2.1
Запишем в виде дроби с общим знаменателем.
Этап 1.4.2.2.2.2
Объединим числители над общим знаменателем.
Этап 1.4.2.2.2.3
Вычтем из .
Этап 1.4.2.2.2.4
Вынесем знак минуса перед дробью.
Этап 1.4.3
Перечислим все точки.
Этап 2
Этап 2.1
Найдем значение в .
Этап 2.1.1
Подставим вместо .
Этап 2.1.2
Упростим.
Этап 2.1.2.1
Упростим каждый член.
Этап 2.1.2.1.1
Возведем в степень .
Этап 2.1.2.1.2
Умножим на , сложив экспоненты.
Этап 2.1.2.1.2.1
Перенесем .
Этап 2.1.2.1.2.2
Умножим на .
Этап 2.1.2.1.2.2.1
Возведем в степень .
Этап 2.1.2.1.2.2.2
Применим правило степени для объединения показателей.
Этап 2.1.2.1.2.3
Добавим и .
Этап 2.1.2.1.3
Возведем в степень .
Этап 2.1.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.1.2.3
Объединим и .
Этап 2.1.2.4
Объединим числители над общим знаменателем.
Этап 2.1.2.5
Упростим числитель.
Этап 2.1.2.5.1
Умножим на .
Этап 2.1.2.5.2
Вычтем из .
Этап 2.1.2.6
Вынесем знак минуса перед дробью.
Этап 2.2
Найдем значение в .
Этап 2.2.1
Подставим вместо .
Этап 2.2.2
Упростим.
Этап 2.2.2.1
Упростим каждый член.
Этап 2.2.2.1.1
Возведем в степень .
Этап 2.2.2.1.2
Сократим общий множитель .
Этап 2.2.2.1.2.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.2.2.1.2.2
Вынесем множитель из .
Этап 2.2.2.1.2.3
Сократим общий множитель.
Этап 2.2.2.1.2.4
Перепишем это выражение.
Этап 2.2.2.1.3
Умножим на .
Этап 2.2.2.2
Вычтем из .
Этап 2.3
Перечислим все точки.
Этап 3
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 4