Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале (2x^(5/2))/5-(2x^(3/2))/3-6 , [0,4]
,
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.1.2.4
Объединим и .
Этап 1.1.1.2.5
Объединим числители над общим знаменателем.
Этап 1.1.1.2.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.6.1
Умножим на .
Этап 1.1.1.2.6.2
Вычтем из .
Этап 1.1.1.2.7
Объединим и .
Этап 1.1.1.2.8
Умножим на .
Этап 1.1.1.2.9
Умножим на .
Этап 1.1.1.2.10
Умножим на .
Этап 1.1.1.2.11
Сократим общий множитель.
Этап 1.1.1.2.12
Разделим на .
Этап 1.1.1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.3.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.1.1.3.4
Объединим и .
Этап 1.1.1.3.5
Объединим числители над общим знаменателем.
Этап 1.1.1.3.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.6.1
Умножим на .
Этап 1.1.1.3.6.2
Вычтем из .
Этап 1.1.1.3.7
Объединим и .
Этап 1.1.1.3.8
Умножим на .
Этап 1.1.1.3.9
Умножим на .
Этап 1.1.1.3.10
Умножим на .
Этап 1.1.1.3.11
Сократим общий множитель.
Этап 1.1.1.3.12
Разделим на .
Этап 1.1.1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.1.1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.4.2
Добавим и .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Найдем общий множитель , который присутствует в каждом члене.
Этап 1.2.3
Подставим вместо .
Этап 1.2.4
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Умножим на .
Этап 1.2.4.2
Разложим левую часть уравнения на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1.1
Вынесем множитель из .
Этап 1.2.4.2.1.2
Вынесем множитель из .
Этап 1.2.4.2.1.3
Вынесем множитель из .
Этап 1.2.4.2.2
Перепишем в виде .
Этап 1.2.4.2.3
Разложим на множители.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.3.1
Поскольку оба члена являются полными квадратами, выполним разложение на множители, используя формулу разности квадратов, , где и .
Этап 1.2.4.2.3.2
Избавимся от ненужных скобок.
Этап 1.2.4.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4.4
Приравняем к .
Этап 1.2.4.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.5.1
Приравняем к .
Этап 1.2.4.5.2
Вычтем из обеих частей уравнения.
Этап 1.2.4.6
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.6.1
Приравняем к .
Этап 1.2.4.6.2
Добавим к обеим частям уравнения.
Этап 1.2.4.7
Окончательным решением являются все значения, при которых верно.
Этап 1.2.5
Подставим вместо .
Этап 1.2.6
Решим относительно для .
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 1.2.6.2
Упростим показатель степени.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.1.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 1.2.6.2.1.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.1.1.1.2.1
Сократим общий множитель.
Этап 1.2.6.2.1.1.1.2.2
Перепишем это выражение.
Этап 1.2.6.2.1.1.2
Упростим.
Этап 1.2.6.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.6.2.2.1
Возведение в любую положительную степень дает .
Этап 1.2.7
Решим относительно для .
Нажмите для увеличения количества этапов...
Этап 1.2.7.1
Возведем обе части уравнения в степень , чтобы исключить дробный показатель в левой части.
Этап 1.2.7.2
Упростим показатель степени.
Нажмите для увеличения количества этапов...
Этап 1.2.7.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.7.2.1.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.7.2.1.1.1
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 1.2.7.2.1.1.1.1
Применим правило степени и перемножим показатели, .
Этап 1.2.7.2.1.1.1.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.7.2.1.1.1.2.1
Сократим общий множитель.
Этап 1.2.7.2.1.1.1.2.2
Перепишем это выражение.
Этап 1.2.7.2.1.1.2
Упростим.
Этап 1.2.7.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.7.2.2.1
Возведем в степень .
Этап 1.2.8
Перечислим все решения.
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Преобразуем выражения, перейдя от дробных степеней к радикалам.
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 1.3.1.2
Применим правило , чтобы представить возведение в степень в виде радикала.
Этап 1.3.1.3
Любое число, возведенное в степень , является основанием.
Этап 1.3.2
Зададим подкоренное выражение в меньшим , чтобы узнать, где данное выражение не определено.
Этап 1.3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Возьмем указанный корень от обеих частей неравенства, чтобы исключить член со степенью в левой части.
Этап 1.3.3.2
Упростим уравнение.
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.1
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.1.1
Вынесем члены из-под знака корня.
Этап 1.3.3.2.2
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.2.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.3.3.2.2.1.1
Перепишем в виде .
Этап 1.3.3.2.2.1.2
Вынесем члены из-под знака корня.
Этап 1.3.4
Уравнение не определено, если знаменатель равен , аргумент под знаком квадратного корня меньше или аргумент под знаком логарифма меньше или равен .
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1.1
Перепишем в виде .
Этап 1.4.1.2.1.1.2
Применим правило степени и перемножим показатели, .
Этап 1.4.1.2.1.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1.3.1
Сократим общий множитель.
Этап 1.4.1.2.1.1.3.2
Перепишем это выражение.
Этап 1.4.1.2.1.1.4
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.2
Умножим на .
Этап 1.4.1.2.1.3
Разделим на .
Этап 1.4.1.2.1.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.4.1
Перепишем в виде .
Этап 1.4.1.2.1.4.2
Применим правило степени и перемножим показатели, .
Этап 1.4.1.2.1.4.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.4.3.1
Сократим общий множитель.
Этап 1.4.1.2.1.4.3.2
Перепишем это выражение.
Этап 1.4.1.2.1.4.4
Возведение в любую положительную степень дает .
Этап 1.4.1.2.1.5
Умножим на .
Этап 1.4.1.2.1.6
Разделим на .
Этап 1.4.1.2.1.7
Умножим на .
Этап 1.4.1.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.2.1
Добавим и .
Этап 1.4.1.2.2.2
Вычтем из .
Этап 1.4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1
Единица в любой степени равна единице.
Этап 1.4.2.2.1.2
Умножим на .
Этап 1.4.2.2.1.3
Единица в любой степени равна единице.
Этап 1.4.2.2.1.4
Умножим на .
Этап 1.4.2.2.2
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.2.1
Умножим на .
Этап 1.4.2.2.2.2
Умножим на .
Этап 1.4.2.2.2.3
Умножим на .
Этап 1.4.2.2.2.4
Умножим на .
Этап 1.4.2.2.2.5
Запишем в виде дроби со знаменателем .
Этап 1.4.2.2.2.6
Умножим на .
Этап 1.4.2.2.2.7
Умножим на .
Этап 1.4.2.2.2.8
Изменим порядок множителей в .
Этап 1.4.2.2.2.9
Умножим на .
Этап 1.4.2.2.2.10
Умножим на .
Этап 1.4.2.2.3
Объединим числители над общим знаменателем.
Этап 1.4.2.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.4.1
Умножим на .
Этап 1.4.2.2.4.2
Умножим на .
Этап 1.4.2.2.4.3
Умножим на .
Этап 1.4.2.2.5
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.5.1
Вычтем из .
Этап 1.4.2.2.5.2
Вычтем из .
Этап 1.4.2.2.5.3
Вынесем знак минуса перед дробью.
Этап 1.4.3
Перечислим все точки.
Этап 2
Вычислим на включенных конечных точках.
Нажмите для увеличения количества этапов...
Этап 2.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Подставим вместо .
Этап 2.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1.1
Перепишем в виде .
Этап 2.1.2.1.1.2
Применим правило степени и перемножим показатели, .
Этап 2.1.2.1.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.1.3.1
Сократим общий множитель.
Этап 2.1.2.1.1.3.2
Перепишем это выражение.
Этап 2.1.2.1.1.4
Возведение в любую положительную степень дает .
Этап 2.1.2.1.2
Умножим на .
Этап 2.1.2.1.3
Разделим на .
Этап 2.1.2.1.4
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.4.1
Перепишем в виде .
Этап 2.1.2.1.4.2
Применим правило степени и перемножим показатели, .
Этап 2.1.2.1.4.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.1.2.1.4.3.1
Сократим общий множитель.
Этап 2.1.2.1.4.3.2
Перепишем это выражение.
Этап 2.1.2.1.4.4
Возведение в любую положительную степень дает .
Этап 2.1.2.1.5
Умножим на .
Этап 2.1.2.1.6
Разделим на .
Этап 2.1.2.1.7
Умножим на .
Этап 2.1.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 2.1.2.2.1
Добавим и .
Этап 2.1.2.2.2
Вычтем из .
Этап 2.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Подставим вместо .
Этап 2.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1.1
Перепишем в виде .
Этап 2.2.2.1.1.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2.1.1.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.1.2.2.1
Сократим общий множитель.
Этап 2.2.2.1.1.2.2.2
Перепишем это выражение.
Этап 2.2.2.1.1.3
Применим правило степени для объединения показателей.
Этап 2.2.2.1.1.4
Добавим и .
Этап 2.2.2.1.2
Возведем в степень .
Этап 2.2.2.1.3
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.3.1
Перепишем в виде .
Этап 2.2.2.1.3.2
Перемножим экспоненты в .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.3.2.1
Применим правило степени и перемножим показатели, .
Этап 2.2.2.1.3.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.2.2.1.3.2.2.1
Сократим общий множитель.
Этап 2.2.2.1.3.2.2.2
Перепишем это выражение.
Этап 2.2.2.1.3.3
Применим правило степени для объединения показателей.
Этап 2.2.2.1.3.4
Добавим и .
Этап 2.2.2.1.4
Возведем в степень .
Этап 2.2.2.2
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 2.2.2.2.1
Умножим на .
Этап 2.2.2.2.2
Умножим на .
Этап 2.2.2.2.3
Умножим на .
Этап 2.2.2.2.4
Умножим на .
Этап 2.2.2.2.5
Запишем в виде дроби со знаменателем .
Этап 2.2.2.2.6
Умножим на .
Этап 2.2.2.2.7
Умножим на .
Этап 2.2.2.2.8
Изменим порядок множителей в .
Этап 2.2.2.2.9
Умножим на .
Этап 2.2.2.2.10
Умножим на .
Этап 2.2.2.3
Объединим числители над общим знаменателем.
Этап 2.2.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.2.2.4.1
Умножим на .
Этап 2.2.2.4.2
Умножим на .
Этап 2.2.2.4.3
Умножим на .
Этап 2.2.2.5
Упростим путем вычитания чисел.
Нажмите для увеличения количества этапов...
Этап 2.2.2.5.1
Вычтем из .
Этап 2.2.2.5.2
Вычтем из .
Этап 2.3
Перечислим все точки.
Этап 3
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Абсолютный максимум:
Абсолютный минимум:
Этап 4