Математический анализ Примеры

Найти абсолютный максимум и минимум на интервале f(x)=x^3+x^2-5x+8 ; (0,infinity)
;
Этап 1
Найдем критические точки.
Нажмите для увеличения количества этапов...
Этап 1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1
Найдем первую производную.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.1.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.1.1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.1.1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.1.1.2.3
Умножим на .
Этап 1.1.1.3
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.1.1.3.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.1.1.3.2
Добавим и .
Этап 1.1.2
Первая производная по равна .
Этап 1.2
Приравняем первую производную к , затем найдем решение уравнения .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Пусть первая производная равна .
Этап 1.2.2
Разложим на множители методом группировки
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Для многочлена вида представим средний член в виде суммы двух членов, произведение которых равно , а сумма — .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Вынесем множитель из .
Этап 1.2.2.1.2
Запишем как плюс
Этап 1.2.2.1.3
Применим свойство дистрибутивности.
Этап 1.2.2.2
Вынесем наибольший общий делитель из каждой группы.
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1
Сгруппируем первые два члена и последние два члена.
Этап 1.2.2.2.2
Вынесем наибольший общий делитель (НОД) из каждой группы.
Этап 1.2.2.3
Разложим многочлен, вынеся наибольший общий делитель .
Этап 1.2.3
Если любой отдельный множитель в левой части уравнения равен , все выражение равно .
Этап 1.2.4
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Приравняем к .
Этап 1.2.4.2
Добавим к обеим частям уравнения.
Этап 1.2.5
Приравняем к , затем решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.1
Приравняем к .
Этап 1.2.5.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.1
Вычтем из обеих частей уравнения.
Этап 1.2.5.2.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.2.1
Разделим каждый член на .
Этап 1.2.5.2.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.2.2.1.1
Сократим общий множитель.
Этап 1.2.5.2.2.2.1.2
Разделим на .
Этап 1.2.5.2.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.2.5.2.2.3.1
Вынесем знак минуса перед дробью.
Этап 1.2.6
Окончательным решением являются все значения, при которых верно.
Этап 1.3
Найдем значения, при которых производная не определена.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Область определения выражения ― все действительные числа, за исключением случаев, когда выражение не определено. В данном случае не существует вещественного числа, при котором выражение не определено.
Этап 1.4
Вычислим для каждого значения , для которого производная равна или не определена.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.1.1
Подставим вместо .
Этап 1.4.1.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.1.1
Единица в любой степени равна единице.
Этап 1.4.1.2.1.2
Единица в любой степени равна единице.
Этап 1.4.1.2.1.3
Умножим на .
Этап 1.4.1.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 1.4.1.2.2.1
Добавим и .
Этап 1.4.1.2.2.2
Вычтем из .
Этап 1.4.1.2.2.3
Добавим и .
Этап 1.4.2
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.4.2.1
Подставим вместо .
Этап 1.4.2.2
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.1.1
Применим правило умножения к .
Этап 1.4.2.2.1.1.2
Применим правило умножения к .
Этап 1.4.2.2.1.2
Возведем в степень .
Этап 1.4.2.2.1.3
Возведем в степень .
Этап 1.4.2.2.1.4
Возведем в степень .
Этап 1.4.2.2.1.5
Применим правило степени для распределения показателей.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.5.1
Применим правило умножения к .
Этап 1.4.2.2.1.5.2
Применим правило умножения к .
Этап 1.4.2.2.1.6
Возведем в степень .
Этап 1.4.2.2.1.7
Умножим на .
Этап 1.4.2.2.1.8
Возведем в степень .
Этап 1.4.2.2.1.9
Возведем в степень .
Этап 1.4.2.2.1.10
Умножим .
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.1.10.1
Умножим на .
Этап 1.4.2.2.1.10.2
Объединим и .
Этап 1.4.2.2.1.10.3
Умножим на .
Этап 1.4.2.2.2
Найдем общий знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.2.1
Умножим на .
Этап 1.4.2.2.2.2
Умножим на .
Этап 1.4.2.2.2.3
Умножим на .
Этап 1.4.2.2.2.4
Умножим на .
Этап 1.4.2.2.2.5
Запишем в виде дроби со знаменателем .
Этап 1.4.2.2.2.6
Умножим на .
Этап 1.4.2.2.2.7
Умножим на .
Этап 1.4.2.2.2.8
Изменим порядок множителей в .
Этап 1.4.2.2.2.9
Умножим на .
Этап 1.4.2.2.2.10
Умножим на .
Этап 1.4.2.2.3
Объединим числители над общим знаменателем.
Этап 1.4.2.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.4.1
Умножим на .
Этап 1.4.2.2.4.2
Умножим на .
Этап 1.4.2.2.4.3
Умножим на .
Этап 1.4.2.2.5
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 1.4.2.2.5.1
Добавим и .
Этап 1.4.2.2.5.2
Добавим и .
Этап 1.4.2.2.5.3
Добавим и .
Этап 1.4.3
Перечислим все точки.
Этап 2
Исключим точки, которые не принадлежат данному интервалу.
Этап 3
Определим точки возможного максимума или минимума с помощью первой производной.
Нажмите для увеличения количества этапов...
Этап 3.1
Разобьем на отдельные интервалы в окрестности значений , при которых первая производная равна или не определена.
Этап 3.2
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.2.1
Заменим в этом выражении переменную на .
Этап 3.2.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.2.2.1.1
Возведем в степень .
Этап 3.2.2.1.2
Умножим на .
Этап 3.2.2.1.3
Умножим на .
Этап 3.2.2.2
Упростим путем вычитания чисел.
Нажмите для увеличения количества этапов...
Этап 3.2.2.2.1
Вычтем из .
Этап 3.2.2.2.2
Вычтем из .
Этап 3.2.2.3
Окончательный ответ: .
Этап 3.3
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.3.1
Заменим в этом выражении переменную на .
Этап 3.3.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1.1
Возведение в любую положительную степень дает .
Этап 3.3.2.1.2
Умножим на .
Этап 3.3.2.1.3
Умножим на .
Этап 3.3.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 3.3.2.2.1
Добавим и .
Этап 3.3.2.2.2
Вычтем из .
Этап 3.3.2.3
Окончательный ответ: .
Этап 3.4
Подставим любое число такое, что , из интервала в первую производную , чтобы проверить знак результата (отрицательный или положительный).
Нажмите для увеличения количества этапов...
Этап 3.4.1
Заменим в этом выражении переменную на .
Этап 3.4.2
Упростим результат.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 3.4.2.1.1
Возведем в степень .
Этап 3.4.2.1.2
Умножим на .
Этап 3.4.2.1.3
Умножим на .
Этап 3.4.2.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 3.4.2.2.1
Добавим и .
Этап 3.4.2.2.2
Вычтем из .
Этап 3.4.2.3
Окончательный ответ: .
Этап 3.5
Поскольку первая производная меняет знак с положительного на отрицательный в окрестности ,  — локальный максимум.
 — локальный максимум
Этап 3.6
Поскольку первая производная меняет знак с отрицательного на положительный в окрестности ,  — локальный минимум.
 — локальный минимум
Этап 3.7
Это локальные экстремумы .
 — локальный максимум
 — локальный минимум
 — локальный максимум
 — локальный минимум
Этап 4
Сравним значения , найденные для каждого значения , чтобы определить абсолютные максимум и минимум на заданном интервале. Максимум будет наблюдаться при наибольшем значении , а минимум — при наименьшем значении .
Нет абсолютного максимума
Абсолютный минимум:
Этап 5