Введите задачу...
Математический анализ Примеры
Этап 1
Производная по равна .
Этап 2
Этап 2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2
Производная по равна .
Этап 3
Чтобы найти локальные максимумы и минимумы функции, приравняем производную к и решим полученное уравнение.
Этап 4
Этап 4.1
Разделим каждый член на .
Этап 4.2
Упростим левую часть.
Этап 4.2.1
Деление двух отрицательных значений дает положительное значение.
Этап 4.2.2
Разделим на .
Этап 4.3
Упростим правую часть.
Этап 4.3.1
Разделим на .
Этап 5
Возьмем обратный синус обеих частей уравнения, чтобы извлечь из синуса.
Этап 6
Этап 6.1
Точное значение : .
Этап 7
Функция синуса положительна в первом и втором квадрантах. Для нахождения второго решения вычтем угол приведения из и найдем решение во втором квадранте.
Этап 8
Вычтем из .
Этап 9
Решение уравнения .
Этап 10
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 11
Этап 11.1
Точное значение : .
Этап 11.2
Умножим на .
Этап 12
— локальный максимум, так как вторая производная отрицательная. Это называется тестом второй производной.
— локальный максимум
Этап 13
Этап 13.1
Заменим в этом выражении переменную на .
Этап 13.2
Упростим результат.
Этап 13.2.1
Точное значение : .
Этап 13.2.2
Окончательный ответ: .
Этап 14
Найдем вторую производную в . Если вторая производная положительна, то это локальный минимум. Если она отрицательна, то это локальный максимум.
Этап 15
Этап 15.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 15.2
Точное значение : .
Этап 15.3
Умножим .
Этап 15.3.1
Умножим на .
Этап 15.3.2
Умножим на .
Этап 16
— локальный минимум, так как вторая производная положительная. Это называется тестом второй производной.
— локальный минимум
Этап 17
Этап 17.1
Заменим в этом выражении переменную на .
Этап 17.2
Упростим результат.
Этап 17.2.1
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте. Добавим минус к выражению, так как косинус отрицательный во втором квадранте.
Этап 17.2.2
Точное значение : .
Этап 17.2.3
Умножим на .
Этап 17.2.4
Окончательный ответ: .
Этап 18
Это локальные экстремумы .
— локальный максимум
— локальный минимум
Этап 19