Математический анализ Примеры

Trovare la Retta Tangente in (9,3) Given: x^2=y^4 Find the equation of the tangent line at (9,3)
Given: Find the equation of the tangent line at
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем обе части уравнения.
Этап 1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3
Продифференцируем правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.1.3
Заменим все вхождения на .
Этап 1.3.2
Перепишем в виде .
Этап 1.4
Преобразуем уравнение, приравняв левую часть к правой.
Этап 1.5
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.5.1
Перепишем уравнение в виде .
Этап 1.5.2
Разделим каждый член на и упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Разделим каждый член на .
Этап 1.5.2.2
Упростим левую часть.
Нажмите для увеличения количества этапов...
Этап 1.5.2.2.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.5.2.2.1.1
Сократим общий множитель.
Этап 1.5.2.2.1.2
Перепишем это выражение.
Этап 1.5.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.5.2.2.2.1
Сократим общий множитель.
Этап 1.5.2.2.2.2
Разделим на .
Этап 1.5.2.3
Упростим правую часть.
Нажмите для увеличения количества этапов...
Этап 1.5.2.3.1
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.5.2.3.1.1
Вынесем множитель из .
Этап 1.5.2.3.1.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.5.2.3.1.2.1
Вынесем множитель из .
Этап 1.5.2.3.1.2.2
Сократим общий множитель.
Этап 1.5.2.3.1.2.3
Перепишем это выражение.
Этап 1.6
Заменим на .
Этап 1.7
Найдем значение в .
Нажмите для увеличения количества этапов...
Этап 1.7.1
Заменим в этом выражении переменную на .
Этап 1.7.2
Заменим в этом выражении переменную на .
Этап 1.7.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.7.3.1
Возведем в степень .
Этап 1.7.3.2
Умножим на .
Этап 1.7.4
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 1.7.4.1
Вынесем множитель из .
Этап 1.7.4.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.7.4.2.1
Вынесем множитель из .
Этап 1.7.4.2.2
Сократим общий множитель.
Этап 1.7.4.2.3
Перепишем это выражение.
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Перепишем.
Этап 2.3.1.2
Упростим путем добавления нулей.
Этап 2.3.1.3
Применим свойство дистрибутивности.
Этап 2.3.1.4
Объединим и .
Этап 2.3.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.5.1
Вынесем множитель из .
Этап 2.3.1.5.2
Вынесем множитель из .
Этап 2.3.1.5.3
Сократим общий множитель.
Этап 2.3.1.5.4
Перепишем это выражение.
Этап 2.3.1.6
Объединим и .
Этап 2.3.1.7
Вынесем знак минуса перед дробью.
Этап 2.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Добавим к обеим частям уравнения.
Этап 2.3.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3.2.3
Объединим и .
Этап 2.3.2.4
Объединим числители над общим знаменателем.
Этап 2.3.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.2.5.1
Умножим на .
Этап 2.3.2.5.2
Добавим и .
Этап 2.3.3
Изменим порядок членов.
Этап 3