Математический анализ Примеры

Trovare la Retta Tangente in (0,0) y=sin(8x)+sin(8x)^2 , (0,0)
,
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.2.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.1.2
Производная по равна .
Этап 1.2.1.3
Заменим все вхождения на .
Этап 1.2.2
Поскольку является константой относительно , производная по равна .
Этап 1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.4
Умножим на .
Этап 1.2.5
Перенесем влево от .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.1.3
Заменим все вхождения на .
Этап 1.3.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.3.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.3.2.2
Производная по равна .
Этап 1.3.2.3
Заменим все вхождения на .
Этап 1.3.3
Поскольку является константой относительно , производная по равна .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Умножим на .
Этап 1.3.6
Перенесем влево от .
Этап 1.3.7
Умножим на .
Этап 1.4
Изменим порядок членов.
Этап 1.5
Найдем производную в .
Этап 1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.6.1.1
Умножим на .
Этап 1.6.1.2
Точное значение : .
Этап 1.6.1.3
Умножим на .
Этап 1.6.1.4
Умножим на .
Этап 1.6.1.5
Точное значение : .
Этап 1.6.1.6
Умножим на .
Этап 1.6.1.7
Умножим на .
Этап 1.6.1.8
Точное значение : .
Этап 1.6.1.9
Умножим на .
Этап 1.6.2
Добавим и .
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Добавим и .
Этап 2.3.2
Добавим и .
Этап 3