Математический анализ Примеры

Trovare la Retta Tangente in x=0 f(x)=x^3-3x^2+2x-2 at x=0
at
Этап 1
Найдем значение при .
Нажмите для увеличения количества этапов...
Этап 1.1
Подставим вместо .
Этап 1.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Избавимся от скобок.
Этап 1.2.2
Избавимся от скобок.
Этап 1.2.3
Избавимся от скобок.
Этап 1.2.4
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.4.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.2.4.1.1
Возведение в любую положительную степень дает .
Этап 1.2.4.1.2
Возведение в любую положительную степень дает .
Этап 1.2.4.1.3
Умножим на .
Этап 1.2.4.1.4
Умножим на .
Этап 1.2.4.2
Упростим путем сложения и вычитания.
Нажмите для увеличения количества этапов...
Этап 1.2.4.2.1
Добавим и .
Этап 1.2.4.2.2
Добавим и .
Этап 1.2.4.2.3
Вычтем из .
Этап 2
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 2.1.1
По правилу суммы производная по имеет вид .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Умножим на .
Этап 2.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3
Умножим на .
Этап 2.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 2.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 2.4.2
Добавим и .
Этап 2.5
Найдем производную в .
Этап 2.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.6.1.1
Возведение в любую положительную степень дает .
Этап 2.6.1.2
Умножим на .
Этап 2.6.1.3
Умножим на .
Этап 2.6.2
Упростим путем добавления чисел.
Нажмите для увеличения количества этапов...
Этап 2.6.2.1
Добавим и .
Этап 2.6.2.2
Добавим и .
Этап 3
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Добавим и .
Этап 3.3.2
Вычтем из обеих частей уравнения.
Этап 4