Математический анализ Примеры

Trovare la Retta Tangente in (1,0) f(x)=x-x^3 , (1,0)
,
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.1.1
По правилу суммы производная по имеет вид .
Этап 1.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Умножим на .
Этап 1.3
Изменим порядок членов.
Этап 1.4
Найдем производную в .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.5.1.1
Единица в любой степени равна единице.
Этап 1.5.1.2
Умножим на .
Этап 1.5.2
Добавим и .
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Добавим и .
Этап 2.3.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Применим свойство дистрибутивности.
Этап 2.3.2.2
Умножим на .
Этап 3