Математический анализ Примеры

Trovare la Retta Tangente in (π/4,-√(2)/2) y=cos(3x) , (pi/4,-( квадратный корень из 2)/2)
,
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2
Производная по равна .
Этап 1.1.3
Заменим все вхождения на .
Этап 1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Умножим на .
Этап 1.2.3
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.4
Умножим на .
Этап 1.3
Найдем производную в .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Объединим и .
Этап 1.4.2
Применим угол приведения, найдя угол с эквивалентными тригонометрическими значениями в первом квадранте.
Этап 1.4.3
Точное значение : .
Этап 1.4.4
Объединим и .
Этап 1.4.5
Вынесем знак минуса перед дробью.
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Перепишем.
Этап 2.3.1.2
Упростим путем добавления нулей.
Этап 2.3.1.3
Применим свойство дистрибутивности.
Этап 2.3.1.4
Объединим и .
Этап 2.3.1.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.5.1
Умножим на .
Этап 2.3.1.5.2
Умножим на .
Этап 2.3.1.5.3
Умножим на .
Этап 2.3.1.5.4
Умножим на .
Этап 2.3.1.6
Перенесем влево от .
Этап 2.3.2
Вычтем из обеих частей уравнения.
Этап 2.3.3
Запишем в форме .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3.3.2
Запишем каждое выражение с общим знаменателем , умножив на подходящий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.3.2.1
Умножим на .
Этап 2.3.3.2.2
Умножим на .
Этап 2.3.3.3
Объединим числители над общим знаменателем.
Этап 2.3.3.4
Умножим на .
Этап 2.3.3.5
Изменим порядок членов.
Этап 2.3.3.6
Избавимся от скобок.
Этап 3