Введите задачу...
Математический анализ Примеры
at
Этап 1
Этап 1.1
Поскольку является константой относительно , производная по равна .
Этап 1.2
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.3
Продифференцируем.
Этап 1.3.1
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.2
Умножим на .
Этап 1.3.3
По правилу суммы производная по имеет вид .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Поскольку является константой относительно , производная относительно равна .
Этап 1.3.6
Упростим члены.
Этап 1.3.6.1
Добавим и .
Этап 1.3.6.2
Умножим на .
Этап 1.3.6.3
Вычтем из .
Этап 1.3.6.4
Добавим и .
Этап 1.3.6.5
Объединим и .
Этап 1.3.6.6
Умножим на .
Этап 1.4
Найдем производную в .
Этап 1.5
Упростим.
Этап 1.5.1
Упростим знаменатель.
Этап 1.5.1.1
Добавим и .
Этап 1.5.1.2
Возведем в степень .
Этап 1.5.2
Сократим общий множитель и .
Этап 1.5.2.1
Вынесем множитель из .
Этап 1.5.2.2
Сократим общие множители.
Этап 1.5.2.2.1
Вынесем множитель из .
Этап 1.5.2.2.2
Сократим общий множитель.
Этап 1.5.2.2.3
Перепишем это выражение.
Этап 2
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Этап 2.3.1
Упростим .
Этап 2.3.1.1
Перепишем.
Этап 2.3.1.2
Упростим путем добавления нулей.
Этап 2.3.1.3
Применим свойство дистрибутивности.
Этап 2.3.1.4
Объединим и .
Этап 2.3.1.5
Умножим на .
Этап 2.3.2
Перенесем все члены без в правую часть уравнения.
Этап 2.3.2.1
Вычтем из обеих частей уравнения.
Этап 2.3.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3.2.3
Объединим и .
Этап 2.3.2.4
Объединим числители над общим знаменателем.
Этап 2.3.2.5
Упростим числитель.
Этап 2.3.2.5.1
Умножим на .
Этап 2.3.2.5.2
Вычтем из .
Этап 2.3.3
Изменим порядок членов.
Этап 3