Математический анализ Примеры

Trovare la Retta Tangente in (1/4,4e) y=(e^(4x))/x , (1/4,4e)
,
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя правило частного, которое гласит, что имеет вид , где и .
Этап 1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2
Продифференцируем, используя правило экспоненты, которое гласит, что имеет вид , где =.
Этап 1.2.3
Заменим все вхождения на .
Этап 1.3
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Умножим на .
Этап 1.3.3.2
Перенесем влево от .
Этап 1.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.5
Умножим на .
Этап 1.4
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Перепишем, используя свойство коммутативности умножения.
Этап 1.4.2
Изменим порядок членов.
Этап 1.4.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.4.3.1
Вынесем множитель из .
Этап 1.4.3.2
Вынесем множитель из .
Этап 1.4.3.3
Вынесем множитель из .
Этап 1.5
Найдем производную в .
Этап 1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.6.1.1
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.6.1.1.1
Сократим общий множитель.
Этап 1.6.1.1.2
Перепишем это выражение.
Этап 1.6.1.2
Вычтем из .
Этап 1.6.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.6.1.3.1
Сократим общий множитель.
Этап 1.6.1.3.2
Перепишем это выражение.
Этап 1.6.1.4
Упростим.
Этап 1.6.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.6.2.1
Применим правило умножения к .
Этап 1.6.2.2
Единица в любой степени равна единице.
Этап 1.6.2.3
Возведем в степень .
Этап 1.6.3
Умножим на .
Этап 1.6.4
Умножим числитель на величину, обратную знаменателю.
Этап 1.6.5
Умножим на .
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Умножим на .
Этап 2.3.2
Добавим к обеим частям уравнения.
Этап 3