Математический анализ Примеры

Trovare la Retta Tangente in (6,0) y = natural log of x^2-6x+1 , (6,0)
,
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.1.1
Чтобы применить цепное правило, зададим как .
Этап 1.1.2
Производная по равна .
Этап 1.1.3
Заменим все вхождения на .
Этап 1.2
Продифференцируем.
Нажмите для увеличения количества этапов...
Этап 1.2.1
По правилу суммы производная по имеет вид .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Поскольку является константой относительно , производная по равна .
Этап 1.2.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.5
Умножим на .
Этап 1.2.6
Поскольку является константой относительно , производная относительно равна .
Этап 1.2.7
Добавим и .
Этап 1.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.3.1
Изменим порядок множителей в .
Этап 1.3.2
Умножим на .
Этап 1.3.3
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 1.3.3.1
Вынесем множитель из .
Этап 1.3.3.2
Вынесем множитель из .
Этап 1.3.3.3
Вынесем множитель из .
Этап 1.4
Найдем производную в .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Вычтем из .
Этап 1.5.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Возведем в степень .
Этап 1.5.2.2
Умножим на .
Этап 1.5.2.3
Вычтем из .
Этап 1.5.2.4
Добавим и .
Этап 1.5.3
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.5.3.1
Умножим на .
Этап 1.5.3.2
Разделим на .
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Добавим и .
Этап 2.3.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Применим свойство дистрибутивности.
Этап 2.3.2.2
Умножим на .
Этап 3