Введите задачу...
Математический анализ Примеры
;
Этап 1
Этап 1.1
Подставим вместо .
Этап 1.2
Решим относительно .
Этап 1.2.1
Избавимся от скобок.
Этап 1.2.2
Избавимся от скобок.
Этап 1.2.3
Упростим .
Этап 1.2.3.1
Возведем в степень .
Этап 1.2.3.2
Умножим на .
Этап 1.2.3.3
Вычтем из .
Этап 1.2.3.4
Единица в любой степени равна единице.
Этап 1.2.3.5
Умножим на .
Этап 2
Этап 2.1
Продифференцируем, используя правило умножения, которое гласит, что имеет вид , где и .
Этап 2.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.2.1
Чтобы применить цепное правило, зададим как .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Заменим все вхождения на .
Этап 2.3
Продифференцируем.
Этап 2.3.1
По правилу суммы производная по имеет вид .
Этап 2.3.2
Поскольку является константой относительно , производная относительно равна .
Этап 2.3.3
Добавим и .
Этап 2.3.4
Поскольку является константой относительно , производная по равна .
Этап 2.3.5
Умножим на .
Этап 2.3.6
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.7
Умножим на .
Этап 2.3.8
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.9
Перенесем влево от .
Этап 2.4
Упростим.
Этап 2.4.1
Вынесем множитель из .
Этап 2.4.1.1
Вынесем множитель из .
Этап 2.4.1.2
Вынесем множитель из .
Этап 2.4.1.3
Вынесем множитель из .
Этап 2.4.2
Перенесем влево от .
Этап 2.5
Найдем производную в .
Этап 2.6
Упростим.
Этап 2.6.1
Упростим выражение.
Этап 2.6.1.1
Возведем в степень .
Этап 2.6.1.2
Умножим на .
Этап 2.6.1.3
Вычтем из .
Этап 2.6.1.4
Единица в любой степени равна единице.
Этап 2.6.1.5
Умножим на .
Этап 2.6.2
Упростим каждый член.
Этап 2.6.2.1
Умножим на .
Этап 2.6.2.2
Умножим на .
Этап 2.6.2.3
Вычтем из .
Этап 2.6.2.4
Умножим на .
Этап 2.6.3
Упростим выражение.
Этап 2.6.3.1
Добавим и .
Этап 2.6.3.2
Умножим на .
Этап 3
Этап 3.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 3.3
Решим относительно .
Этап 3.3.1
Упростим .
Этап 3.3.1.1
Перепишем.
Этап 3.3.1.2
Упростим путем добавления нулей.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.1.4
Умножим на .
Этап 3.3.2
Перенесем все члены без в правую часть уравнения.
Этап 3.3.2.1
Добавим к обеим частям уравнения.
Этап 3.3.2.2
Добавим и .
Этап 4