Математический анализ Примеры

Trovare la Retta Tangente in (4,-57/4) f(x)=-4x^(1/2)-5x^-1-5 at the point (4,-57/4)
at the point
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.4
Объединим и .
Этап 1.2.5
Объединим числители над общим знаменателем.
Этап 1.2.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.2.6.1
Умножим на .
Этап 1.2.6.2
Вычтем из .
Этап 1.2.7
Вынесем знак минуса перед дробью.
Этап 1.2.8
Объединим и .
Этап 1.2.9
Объединим и .
Этап 1.2.10
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.2.11
Вынесем множитель из .
Этап 1.2.12
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 1.2.12.1
Вынесем множитель из .
Этап 1.2.12.2
Сократим общий множитель.
Этап 1.2.12.3
Перепишем это выражение.
Этап 1.2.13
Вынесем знак минуса перед дробью.
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Поскольку является константой относительно , производная относительно равна .
Этап 1.5
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.5.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 1.5.2
Объединим термины.
Нажмите для увеличения количества этапов...
Этап 1.5.2.1
Объединим и .
Этап 1.5.2.2
Добавим и .
Этап 1.5.3
Изменим порядок членов.
Этап 1.6
Найдем производную в .
Этап 1.7
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.7.1
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 1.7.1.1
Возведем в степень .
Этап 1.7.1.2
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.7.1.2.1
Перепишем в виде .
Этап 1.7.1.2.2
Применим правило степени и перемножим показатели, .
Этап 1.7.1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.7.1.2.3.1
Сократим общий множитель.
Этап 1.7.1.2.3.2
Перепишем это выражение.
Этап 1.7.1.2.4
Найдем экспоненту.
Этап 1.7.1.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.7.1.3.1
Сократим общий множитель.
Этап 1.7.1.3.2
Перепишем это выражение.
Этап 1.7.1.4
Умножим на .
Этап 1.7.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.7.3
Объединим и .
Этап 1.7.4
Объединим числители над общим знаменателем.
Этап 1.7.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.7.5.1
Умножим на .
Этап 1.7.5.2
Вычтем из .
Этап 1.7.6
Вынесем знак минуса перед дробью.
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Перепишем.
Этап 2.3.1.2
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.3.1.2.1
Применим свойство дистрибутивности.
Этап 2.3.1.2.2
Объединим и .
Этап 2.3.1.2.3
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.3.1.2.3.1
Перенесем стоящий впереди знак минуса в в числитель.
Этап 2.3.1.2.3.2
Вынесем множитель из .
Этап 2.3.1.2.3.3
Вынесем множитель из .
Этап 2.3.1.2.3.4
Сократим общий множитель.
Этап 2.3.1.2.3.5
Перепишем это выражение.
Этап 2.3.1.2.4
Объединим и .
Этап 2.3.1.2.5
Умножим на .
Этап 2.3.1.3
Перенесем влево от .
Этап 2.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Вычтем из обеих частей уравнения.
Этап 2.3.2.2
Объединим числители над общим знаменателем.
Этап 2.3.2.3
Вычтем из .
Этап 2.3.2.4
Упростим каждый член.
Нажмите для увеличения количества этапов...
Этап 2.3.2.4.1
Вынесем знак минуса перед дробью.
Этап 2.3.2.4.2
Сократим общий множитель и .
Нажмите для увеличения количества этапов...
Этап 2.3.2.4.2.1
Вынесем множитель из .
Этап 2.3.2.4.2.2
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.3.2.4.2.2.1
Вынесем множитель из .
Этап 2.3.2.4.2.2.2
Сократим общий множитель.
Этап 2.3.2.4.2.2.3
Перепишем это выражение.
Этап 2.3.2.4.3
Вынесем знак минуса перед дробью.
Этап 2.3.3
Запишем в форме .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Изменим порядок членов.
Этап 2.3.3.2
Избавимся от скобок.
Этап 3