Математический анализ Примеры

Trovare la Retta Tangente in (2,5/3) f(x)=2/3x^2-x+1 at (2,5/3)
at
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
По правилу суммы производная по имеет вид .
Этап 1.2
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Поскольку является константой относительно , производная по равна .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Объединим и .
Этап 1.2.4
Умножим на .
Этап 1.2.5
Объединим и .
Этап 1.3
Найдем значение .
Нажмите для увеличения количества этапов...
Этап 1.3.1
Поскольку является константой относительно , производная по равна .
Этап 1.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.3.3
Умножим на .
Этап 1.4
Продифференцируем, используя правило константы.
Нажмите для увеличения количества этапов...
Этап 1.4.1
Поскольку является константой относительно , производная относительно равна .
Этап 1.4.2
Добавим и .
Этап 1.5
Найдем производную в .
Этап 1.6
Упростим.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Умножим на .
Этап 1.6.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.6.3
Объединим и .
Этап 1.6.4
Объединим числители над общим знаменателем.
Этап 1.6.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.6.5.1
Умножим на .
Этап 1.6.5.2
Вычтем из .
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Перепишем.
Этап 2.3.1.2
Упростим путем добавления нулей.
Этап 2.3.1.3
Применим свойство дистрибутивности.
Этап 2.3.1.4
Объединим и .
Этап 2.3.1.5
Умножим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.5.1
Объединим и .
Этап 2.3.1.5.2
Умножим на .
Этап 2.3.1.6
Вынесем знак минуса перед дробью.
Этап 2.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Добавим к обеим частям уравнения.
Этап 2.3.2.2
Объединим числители над общим знаменателем.
Этап 2.3.2.3
Добавим и .
Этап 2.3.2.4
Вынесем множитель из .
Нажмите для увеличения количества этапов...
Этап 2.3.2.4.1
Вынесем множитель из .
Этап 2.3.2.4.2
Вынесем множитель из .
Этап 2.3.2.4.3
Вынесем множитель из .
Этап 2.3.3
Запишем в форме .
Нажмите для увеличения количества этапов...
Этап 2.3.3.1
Применим свойство дистрибутивности.
Этап 2.3.3.2
Умножим на .
Этап 2.3.3.3
Разобьем дробь на две дроби.
Этап 2.3.3.4
Вынесем знак минуса перед дробью.
Этап 2.3.3.5
Изменим порядок членов.
Этап 3