Математический анализ Примеры

Trovare la Retta Tangente in (4,3) y = square root of 2x+1 , (4,3)
,
Этап 1
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 1.1
С помощью запишем в виде .
Этап 1.2
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Чтобы применить цепное правило, зададим как .
Этап 1.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.2.3
Заменим все вхождения на .
Этап 1.3
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.4
Объединим и .
Этап 1.5
Объединим числители над общим знаменателем.
Этап 1.6
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 1.6.1
Умножим на .
Этап 1.6.2
Вычтем из .
Этап 1.7
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 1.7.1
Вынесем знак минуса перед дробью.
Этап 1.7.2
Объединим и .
Этап 1.7.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 1.8
По правилу суммы производная по имеет вид .
Этап 1.9
Поскольку является константой относительно , производная по равна .
Этап 1.10
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 1.11
Умножим на .
Этап 1.12
Поскольку является константой относительно , производная относительно равна .
Этап 1.13
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 1.13.1
Добавим и .
Этап 1.13.2
Объединим и .
Этап 1.13.3
Сократим общий множитель.
Этап 1.13.4
Перепишем это выражение.
Этап 1.14
Найдем производную в .
Этап 1.15
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 1.15.1
Умножим на .
Этап 1.15.2
Добавим и .
Этап 1.15.3
Перепишем в виде .
Этап 1.15.4
Применим правило степени и перемножим показатели, .
Этап 1.15.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.15.5.1
Сократим общий множитель.
Этап 1.15.5.2
Перепишем это выражение.
Этап 1.15.6
Найдем экспоненту.
Этап 2
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 2.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 2.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 2.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 2.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 2.3.1.1
Перепишем.
Этап 2.3.1.2
Упростим путем добавления нулей.
Этап 2.3.1.3
Применим свойство дистрибутивности.
Этап 2.3.1.4
Объединим и .
Этап 2.3.1.5
Объединим и .
Этап 2.3.1.6
Вынесем знак минуса перед дробью.
Этап 2.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 2.3.2.1
Добавим к обеим частям уравнения.
Этап 2.3.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3.2.3
Объединим и .
Этап 2.3.2.4
Объединим числители над общим знаменателем.
Этап 2.3.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.3.2.5.1
Умножим на .
Этап 2.3.2.5.2
Добавим и .
Этап 2.3.3
Изменим порядок членов.
Этап 3