Математический анализ Примеры

Trovare la Retta Tangente in x=π/2 y=cos(x) at x=pi/2
at
Этап 1
Найдем значение при .
Нажмите для увеличения количества этапов...
Этап 1.1
Подставим вместо .
Этап 1.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Избавимся от скобок.
Этап 1.2.2
Точное значение : .
Этап 2
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 2.1
Производная по равна .
Этап 2.2
Найдем производную в .
Этап 2.3
Упростим.
Нажмите для увеличения количества этапов...
Этап 2.3.1
Точное значение : .
Этап 2.3.2
Умножим на .
Этап 3
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Добавим и .
Этап 3.3.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Применим свойство дистрибутивности.
Этап 3.3.2.2
Перепишем в виде .
Этап 3.3.2.3
Умножим .
Нажмите для увеличения количества этапов...
Этап 3.3.2.3.1
Умножим на .
Этап 3.3.2.3.2
Умножим на .
Этап 4