Математический анализ Примеры

Trovare la Retta Tangente in x=2 f(x)=(10x-4)^(1/2) , x=2
,
Этап 1
Найдем значение при .
Нажмите для увеличения количества этапов...
Этап 1.1
Подставим вместо .
Этап 1.2
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 1.2.1
Избавимся от скобок.
Этап 1.2.2
Упростим .
Нажмите для увеличения количества этапов...
Этап 1.2.2.1
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 1.2.2.1.1
Умножим на .
Этап 1.2.2.1.2
Вычтем из .
Этап 1.2.2.1.3
Перепишем в виде .
Этап 1.2.2.1.4
Применим правило степени и перемножим показатели, .
Этап 1.2.2.2
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 1.2.2.2.1
Сократим общий множитель.
Этап 1.2.2.2.2
Перепишем это выражение.
Этап 1.2.2.3
Найдем экспоненту.
Этап 2
Найдем первую производную и вычислим ее значения в точках и , чтобы найти угловой коэффициент касательной.
Нажмите для увеличения количества этапов...
Этап 2.1
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Нажмите для увеличения количества этапов...
Этап 2.1.1
Чтобы применить цепное правило, зададим как .
Этап 2.1.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.1.3
Заменим все вхождения на .
Этап 2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 2.3
Объединим и .
Этап 2.4
Объединим числители над общим знаменателем.
Этап 2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 2.5.1
Умножим на .
Этап 2.5.2
Вычтем из .
Этап 2.6
Объединим дроби.
Нажмите для увеличения количества этапов...
Этап 2.6.1
Вынесем знак минуса перед дробью.
Этап 2.6.2
Объединим и .
Этап 2.6.3
Перенесем в знаменатель, используя правило отрицательных степеней .
Этап 2.7
По правилу суммы производная по имеет вид .
Этап 2.8
Поскольку является константой относительно , производная по равна .
Этап 2.9
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.10
Умножим на .
Этап 2.11
Поскольку является константой относительно , производная относительно равна .
Этап 2.12
Упростим члены.
Нажмите для увеличения количества этапов...
Этап 2.12.1
Добавим и .
Этап 2.12.2
Объединим и .
Этап 2.12.3
Вынесем множитель из .
Этап 2.13
Сократим общие множители.
Нажмите для увеличения количества этапов...
Этап 2.13.1
Вынесем множитель из .
Этап 2.13.2
Сократим общий множитель.
Этап 2.13.3
Перепишем это выражение.
Этап 2.14
Найдем производную в .
Этап 2.15
Упростим знаменатель.
Нажмите для увеличения количества этапов...
Этап 2.15.1
Умножим на .
Этап 2.15.2
Вычтем из .
Этап 2.15.3
Перепишем в виде .
Этап 2.15.4
Применим правило степени и перемножим показатели, .
Этап 2.15.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 2.15.5.1
Сократим общий множитель.
Этап 2.15.5.2
Перепишем это выражение.
Этап 2.15.6
Найдем экспоненту.
Этап 3
Подставим угловой коэффициент и координаты точки в уравнение прямой с угловым коэффициентом и заданной точкой и решим его относительно .
Нажмите для увеличения количества этапов...
Этап 3.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 3.3
Решим относительно .
Нажмите для увеличения количества этапов...
Этап 3.3.1
Упростим .
Нажмите для увеличения количества этапов...
Этап 3.3.1.1
Перепишем.
Этап 3.3.1.2
Упростим путем добавления нулей.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.1.4
Объединим и .
Этап 3.3.1.5
Сократим общий множитель .
Нажмите для увеличения количества этапов...
Этап 3.3.1.5.1
Вынесем множитель из .
Этап 3.3.1.5.2
Вынесем множитель из .
Этап 3.3.1.5.3
Сократим общий множитель.
Этап 3.3.1.5.4
Перепишем это выражение.
Этап 3.3.1.6
Объединим и .
Этап 3.3.1.7
Упростим выражение.
Нажмите для увеличения количества этапов...
Этап 3.3.1.7.1
Умножим на .
Этап 3.3.1.7.2
Вынесем знак минуса перед дробью.
Этап 3.3.2
Перенесем все члены без в правую часть уравнения.
Нажмите для увеличения количества этапов...
Этап 3.3.2.1
Добавим к обеим частям уравнения.
Этап 3.3.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3.2.3
Объединим и .
Этап 3.3.2.4
Объединим числители над общим знаменателем.
Этап 3.3.2.5
Упростим числитель.
Нажмите для увеличения количества этапов...
Этап 3.3.2.5.1
Умножим на .
Этап 3.3.2.5.2
Добавим и .
Этап 3.3.3
Изменим порядок членов.
Этап 4