Введите задачу...
Математический анализ Примеры
at
Этап 1
Этап 1.1
Подставим вместо .
Этап 1.2
Упростим .
Этап 1.2.1
Упростим каждый член.
Этап 1.2.1.1
Возведем в степень .
Этап 1.2.1.2
Вынесем знак минуса перед дробью.
Этап 1.2.1.3
Возведем в степень .
Этап 1.2.1.4
Разделим на .
Этап 1.2.1.5
Умножим на .
Этап 1.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 1.2.3
Объединим и .
Этап 1.2.4
Объединим числители над общим знаменателем.
Этап 1.2.5
Упростим числитель.
Этап 1.2.5.1
Умножим на .
Этап 1.2.5.2
Добавим и .
Этап 2
Этап 2.1
По правилу суммы производная по имеет вид .
Этап 2.2
Найдем значение .
Этап 2.2.1
Поскольку является константой относительно , производная по равна .
Этап 2.2.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.2.3
Объединим и .
Этап 2.2.4
Объединим и .
Этап 2.2.5
Сократим общий множитель .
Этап 2.2.5.1
Сократим общий множитель.
Этап 2.2.5.2
Разделим на .
Этап 2.3
Найдем значение .
Этап 2.3.1
Поскольку является константой относительно , производная по равна .
Этап 2.3.2
Перепишем в виде .
Этап 2.3.3
Продифференцируем, используя цепное правило (правило дифференцирования сложной функции), которое гласит, что имеет вид , где и .
Этап 2.3.3.1
Чтобы применить цепное правило, зададим как .
Этап 2.3.3.2
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.3.3
Заменим все вхождения на .
Этап 2.3.4
Продифференцируем, используя правило степени, которое гласит, что имеет вид , где .
Этап 2.3.5
Перемножим экспоненты в .
Этап 2.3.5.1
Применим правило степени и перемножим показатели, .
Этап 2.3.5.2
Умножим на .
Этап 2.3.6
Умножим на .
Этап 2.3.7
Умножим на , сложив экспоненты.
Этап 2.3.7.1
Перенесем .
Этап 2.3.7.2
Применим правило степени для объединения показателей.
Этап 2.3.7.3
Вычтем из .
Этап 2.3.8
Умножим на .
Этап 2.4
Упростим.
Этап 2.4.1
Перепишем выражение, используя правило отрицательных степеней .
Этап 2.4.2
Объединим и .
Этап 2.5
Найдем производную в .
Этап 2.6
Упростим.
Этап 2.6.1
Упростим каждый член.
Этап 2.6.1.1
Возведем в степень .
Этап 2.6.1.2
Возведем в степень .
Этап 2.6.1.3
Разделим на .
Этап 2.6.2
Добавим и .
Этап 3
Этап 3.1
Используем угловой коэффициент и координаты заданной точки вместо и в уравнении прямой с угловым коэффициентом и заданной точкой , выведенном из уравнения с угловым коэффициентом .
Этап 3.2
Упростим уравнение и оставим его в виде уравнения прямой с угловым коэффициентом и заданной точкой.
Этап 3.3
Решим относительно .
Этап 3.3.1
Упростим .
Этап 3.3.1.1
Перепишем.
Этап 3.3.1.2
Упростим путем добавления нулей.
Этап 3.3.1.3
Применим свойство дистрибутивности.
Этап 3.3.1.4
Умножим на .
Этап 3.3.2
Перенесем все члены без в правую часть уравнения.
Этап 3.3.2.1
Добавим к обеим частям уравнения.
Этап 3.3.2.2
Чтобы записать в виде дроби с общим знаменателем, умножим ее на .
Этап 3.3.2.3
Объединим и .
Этап 3.3.2.4
Объединим числители над общим знаменателем.
Этап 3.3.2.5
Упростим числитель.
Этап 3.3.2.5.1
Умножим на .
Этап 3.3.2.5.2
Добавим и .
Этап 4